

Rosana Satorre Cuerda (Ed.)

Metodologías activas y tecnologías emergentes aplicadas a la docencia universitaria

Metodologías activas y tecnologías emergentes aplicadas a la docencia universitaria

Edición: Rosana Satorre Cuerda

Revisión y maquetación: ICE de la Universidad de Alicante

Primera edición: octubre de 2025

© De la edición: Rosana Satorre Cuerda

© Del texto: Las autoras y autores

© De esta edición:

Ediciones OCTAEDRO, S.L. C/Bailén, 5 – 08010 Barcelona Tel.: 93 246 40 02 – Fax: 93 231 18 68

www.octaedro.com – octaedro@octaedro.com

ISBN: 978-84-1079-247-0

Producción: Ediciones Octaedro

La revisión de los trabajos se ha realizado de forma rigurosa, siguiendo el protocolo de revisión por pares.

Cualquier forma de reproducción, distribución, comunicación pública o transformación de esta obra solo puede ser realizada con la autorización de sus titulares, salvo excepción prevista por la ley. Diríjase a CEDRO (Centro Español de Derechos Reprográficos, www.cedro.org) si necesita fotocopiar o escanear algún fragmento de esta obra.

NOTA EDITORIAL: Las opiniones y contenidos de los textos publicados en esta obra son de responsabilidad exclusiva de los autores.

COMITÉ TÉCNICO:

Neus Pellin Buades, Universidad de Alicante María Yolanda Gil Barranco, Universidad de Alicante

COMITÉ CIENTÍFICO INTERNACIONAL:

Aires, Luísa. Universidade Aberta de Portugal

Aparicio Flores, Pilar. Universidad de Alicante

Balteiro Fernández, María Isabel. Universidad de Alicante

Buquet Corleto, Ana Gabriela. Universidad Nacional Autónoma de México (UNAM)

Camús Ferri, Mar. Universidad de Alicante

Carrasco Rodríguez, Antonio. Universidad de Alicante

Delgado Doménech, Beatriz. Universidad de Alicante

Fernández Pascual, María Dolores. Universidad de Alicante

Fernández Sogorb, Aitana. Universidad de Alicante

Formigós Bolea, Juan Antonio. Universidad de Alicante

García Jaen, Miguel. Universidad de Alicante

García Ortiz, Adrián. Universidad de Alicante

Gonzálvez Maciá, Carolina. Universidad de Alicante

Hernández Amorós, María José. Universidad de Alicante

Jiménez Olmedo, José Manuel. Universidad de Alicante

Marcillas Piquer, Isabel. Universidad de Alicante

Meza Bolaños, Doris Verónica. Universidad Central de Ecuador

Molina Jordá, José Miguel. Universidad de Alicante

Rosa Cintas, Sergio. Universidad de Alicante

Rovira-Collado, José. Universidad de Alicante

Ruiz Bañuls, Mónica. Universidad de Alicante

Saiz Noeda, Maximiliano. Universidad de Alicante

Sanmartín López, Ricardo. Universidad de Alicante

Santos Ruiz, Ana María. Universidad de Alicante

Sentana Gadea, Irene. Universidad de Alicante

Sepulcre Martínez, Juan Matías. Universidad de Alicante

Valdés García, Aránzazu. Universidad de Alicante

Vicent Juan, María. Universidad de Alicante

Índice

Presentació

1.	Inteligencia artificial generativa en los Grados de Maestro de Educación Infantil y Primaria: usos y aplicaciones del alumnado Amat, Ángel; Sannmartín, Ricardo; Pérez-Marco, María; Gonzálvez, Carolina; Lorenzo-Rumbo, Alba; Fuster-Rico, Andrea; Vicent, María	3
2.	Píldoras educativas de análisis matemático en entornos digitales Arroyo, A.R.; Belén, P.; Castillo, C.; García-Castaño, F.; Muñoz, M.P.; Navarro, J.C.; Sepulcre, J.M.	11
3.	De la Técnica a la Comunicación: Integración de IA Generativa y Formatos de Congreso en la Enseñanza de la Ingeniería Aznar Gregori, Fidel; Rizo Aldeguer Ramón; Arques Corrales, Pilar; Pujol López, Mar; Compañ Rosique, Patricia; Botana Gómez, Javier; Lozano Ortega, Miguel Angel; Mora Lizán, Francisco José; Puchol García, Juan Antonio; Pujol López, Mª José.	23
4.	Student Perceptions of the Educational Use of Generative Artificial Intelligence: A Multidisciplinary Study Carrasco-Rodríguez, Antonio; Aleson-Carbonell, Marian	33
5.	Visualizar, interpretar y decidir: herramientas profesionales como catalizadoras de competencias analíticas en la formación universitaria Escandell-Poveda, Raquel; Papí-Gálvez, Natalia; Calderón Martínez, Aurora; Santa Soriano, Alba; Ros Selva, Jaume	46
6.	Implementación del aprendizaje basado en proyectos en la formación de nutrición humana y dietética: creación de una empresa de base tecnológica Escandell Rico, Francisco Miguel; Pérez Fernández, Lucía	57
7.	La evaluación del aprendizaje informal y horizontal de la lengua italiana a través de microactividades en una comunidad de Facebook Giordano Paredes, Maria Angelica; Villarrubia Zúñiga, María Soledad	68
8.	Aprender a escribir con inteligencia artificial: impacto formativo en Comunic@ndoUA Iglesias-García, Mar; López-Álvarez, Héctor	81
9.	Las píldoras formativas elaboradas por el alumnado del Grado en Relaciones Internacionales como metodología docente en las asignaturas de Derecho Internacional Público y Organizaciones Internacionales Marroquín García, Shaily Stefanny; Ferrer Lloret, Jaume; Guardiola Lohmüller, Ana Victoria; Moya Fuentes, María del Mar; Pérez Rivas, Natalia; Requena Casanova, Millán; Soler García, Carolina; Urbaneja Cillán, Jorge; Vazquez-Portomeñe Seijas, Ferna 90	ando

<i>10</i> .	Pacientes Virtuales con Inteligencia Artificial en Psicopatología: Una Propuesta	
	Innovadora para la Formación Clínica Universitaria	
	Morales, Alexandra; Hervás, Damián; Fernández, César, Fernández-Martínez, Iván; Gonzálvez, María T.; Vicente, M. Asunción	99
11.	La programación colaborativa en estudios universitarios de ingeniería y en enseñanza secundaria como factor diferencial para un aprendizaje significativo Pérez Beltrán, J.; Ñeco García, R. P.	113
12.	Fostering Socioemotional Competencies in Higher Education through Active Methodologies and Emerging Technologies: A Cross-Cultural Study Pozo-Rico, Teresa; Gutiérrez Fresneda, Raúl	125
13.	ChatGPT y lengua árabe: explorando la integración de la IAG en la expresión escrita Ramos López, Fernando; García Cecilia, Cristina	137
14.	Enseñanza de la Ingeniería Costera mediante metodologías activas: Un enfoque centrado en proyectos y debate	1.40
	Toledo Sepulcre, Ignacio; Aragonés Pomares, Luis	148

Metodologías activas y tecnologías emergentes aplicadas a la docencia universitaria

Presentación

El libro que aquí presentamos constituye un testimonio valioso del esfuerzo colectivo por renovar y fortalecer la enseñanza universitaria, situando al estudiante en el centro del proceso de aprendizaje. Tras más de dos décadas de investigación y práctica docente compartida en el marco de las Jornadas de Redes de Investigación en Docencia Universitaria (REDES) y del Workshop Internacional de Innovación en Enseñanza Superior y TIC (INNOVAESTIC) de la Universidad de Alicante, se consolida una producción académica que refleja la vitalidad y el compromiso de nuestra comunidad universitaria con la excelencia educativa.

En esta ocasión, el monográfico aborda un ámbito que se ha convertido en piedra angular de la innovación educativa: las metodologías activas y emergentes aplicadas a la docencia universitaria. A través de diversos capítulos, se exploran experiencias y reflexiones en torno a enfoques como el aprendizaje basado en proyectos y en problemas, el aula invertida, la gamificación, el aprendizaje cooperativo y el uso pedagógico de las tecnologías digitales. Estas metodologías, más allá de ser tendencias, constituyen vías sólidas para favorecer el pensamiento crítico, la autonomía, la creatividad y la colaboración en el alumnado.

Los trabajos recogidos en esta obra han sido seleccionados de entre 52 propuestas presentadas, siguiendo un riguroso proceso de revisión por pares. Cada contribución es fruto de la dedicación de docentes e investigadores que, desde sus aulas experimentan y reflexionan sobre cómo mejorar la calidad de la enseñanza en la educación superior.

Este volumen ofrece, por tanto, una mirada integral sobre el potencial de las metodologías activas para transformar la docencia universitaria. Además de describir sus fundamentos, los capítulos recogen experiencias prácticas que evidencian cómo estas estrategias enriquecen la motivación del alumnado, promueven aprendizajes más significativos y contribuyen a formar profesionales capaces de afrontar los retos de un mundo en constante cambio.

Invitamos a lectoras y lectores –docentes, investigadores y estudiantes– a sumergirse en estas páginas con espíritu crítico y creativo, con el convencimiento de que la innovación pedagógica no es una meta aislada, sino un camino colectivo hacia una universidad más inclusiva, dinámica y comprometida con la sociedad

Rafael Molina Carmona Vicerrector de Transformación Digital

Rosana Satorre Cuerda Directora del Instituto de Ciencias de la Educación

Universidad de Alicante

1. Inteligencia artificial generativa en los Grados de Maestro de Educación Infantil y Primaria: usos y aplicaciones del alumnado¹

Amat, Ángel; Sannmartín, Ricardo; Pérez-Marco, María; Gonzálvez, Carolina; Lorenzo-Rumbo, Alba; Fuster-Rico, Andrea; Vicent, María

Departamento de Psicología Evolutiva y Didáctica, Facultad de Educación, Universidad de Alicante

RESUMEN

Este estudio analiza el uso de inteligencia artificial generativa (IAg) por parte de estudiantes de los grados de Maestro en Educación Infantil y Primaria en la elaboración de trabajos académicos. A partir de 141 respuestas grupales, se observó que más de la mitad del alumnado (53,9%) ha utilizado IAg, con una mayor frecuencia en primero y cuarto curso. La herramienta más empleada fue ChatGPT (79,5%), y el principal uso declarado fue la gestión de texto (60,7%), seguido por la fuente de inspiración (24,7%) y la generación de contenido (12,4%). Estos datos revelan una adopción funcional pero limitada en variedad, con diferencias significativas según el curso. Los resultados de este estudio ponen de relieve una comprensión parcial de las posibilidades que ofrece la inteligencia artificial generativa. Si bien su uso más extendido se orienta a funciones operativas como la gestión de textos, se evidencia una limitada exploración de su potencial creativo o reflexivo, con diferencias notables según el curso académico. Esto sugiere que, aunque el alumnado comienza a incorporar estas herramientas en su formación, aún se requieren estrategias formativas más sólidas que promuevan una utilización crítica, ética y variada de la IA en el ámbito educativo.

PALABRAS CLAVE: Inteligencia artificial generativa, alumnado universitario, Infantil, Primaria y uso.

1. INTRODUCCIÓN

Desde hace varios años, el auge de la inteligencia artificial (IA) ha generado un punto de inflexión en todos los ámbitos de la sociedad, incluida la educación. Más concretamente, durante los últimos 20 años el estudio del impacto de esta tecnología en la educación universitaria ha aumentado considerablemente, con un aumento significativo en el número de estudios sobre la temática en la franja comprendida entre 2011-2020 (Chu et al., 2022).

Podemos definir la IA como un sistema informático capaz de realizar procesos similares a los humanos, como el aprendizaje, la adaptación, la síntesis, la autocorrección y el uso de datos para tareas complejas (Popenici & Kerr, 2017). Otra definición aportada por Chiu (2021) y basada en las propias palabras de profesores universitarios que trabajan con IA actualmente hace referencia a esta tecnología como la capacidad que tiene una máquina para realizar tareas y tomar decisiones de forma similar a un humano.

¹ El presente trabajo ha contado con una ayuda del Programa de Redes de investigación en docencia universitaria del Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2024). Ref.: 6240 y con ayuda de la Universidad de Alicante [proyecto GRE23-09A].

En el ámbito de la enseñanza, se utiliza el concepto de inteligencia artificial en educación (AIEd) que concreta aún más el objetivo y funciones de esta herramienta. Según (Hwang et al., 2020) "la AIEd se refiere al uso de tecnologías o aplicaciones de IA en entornos educativos para facilitar los procesos de enseñanza, aprendizaje y toma de decisiones de las partes involucradas, como estudiantes, profesores y administradores." (p. 7894), usando para ello herramientas como las tutorías inteligentes, los chatbots, los robots y la evaluación automatizada (Chiu et al., 2023).

Hasta ahora, la IA se está utilizando con diferentes aplicaciones dentro de las aulas. Según Gupta & Chen (2022), se ha facilitado el acceso a materiales de aprendizaje inclusivo, mientras que otros estudios destacan la provisión de retroalimentación inmediata y personalizada, oportunidades para la autoevaluación y respuestas automáticas a preguntas (Mousavi et al., 2021). En el caso de estudiantes pertenecientes a minorías étnicas, Zhang & Xu (2022) emplearon sistemas de evaluación automatizada para mejorar la escritura académica de estudiantes uigures, evidenciando la capacidad de la IA para adaptarse a contextos culturales diversos. Asimismo, iniciativas como el sistema CARAMBA han demostrado mejoras en las habilidades de programación mediante recomendaciones de ejercicios adecuados para estudiantes que utilizan Scratch (Cardenas-Cobo et al., 2020). Una comparación entre recursos educativos enriquecidos con IA y materiales digitales tradicionales también mostró una mayor participación y retención del conocimiento entre los estudiantes que utilizaron los primeros (Koé-Januchta et al., 2020).

Otro uso prominente de la IA en educación superior se encuentra en los sistemas de evaluación automática, los cuales reducen la carga de trabajo docente y permiten una evaluación más ágil (Rutner & Scott, 2022). Además, se han implementado modelos de predicción del rendimiento estudiantil basados en redes neuronales y registros de interacción para identificar a estudiantes en riesgo de abandono (Mubarak et al., 2022; Qian et al., 2022; Tomasevic et al., 2020).

La IA también respalda el diseño de evaluaciones al facilitar la generación de preguntas y pruebas mediante procesamiento de lenguaje natural, lo cual optimiza los tiempos de preparación de los docentes y favorece la personalización del aprendizaje (Lu et al., 2021; Yang et al., 2021).

Los sistemas de tutoría inteligente constituyen una de las aplicaciones más sofisticadas de la IA educativa. Herramientas como Stat-Knowlab o LabTutor ajustan el contenido en función del nivel de competencia de cada estudiante, proporcionando trayectorias personalizadas de aprendizaje y acceso adaptado a experimentos de laboratorio (Chiusole et al., 2020; Khalfallah & Ben Hadj Slama, 2019).

La analítica del aprendizaje ha sido utilizada para asistir a los docentes en la gestión de las interacciones en el aula. Mavrikis et al. (2019) propusieron el uso de visualizaciones como apoyo en entornos de aprendizaje exploratorio, facilitando el seguimiento de metas, interacciones y progresos mediante representaciones gráficas altamente informativas.

En el caso propio del alumnado, investigaciones anteriores en población universitaria han establecido que tienden a aprovechar las diferentes ventajas de la IA en términos de rapidez y eficiencia, personalización del aprendizaje e inspiración y nuevas ideas, entre otros aspectos (Álvarez-Herrero, 2024).

En conclusión, la irrupción de la Inteligencia Artificial generativa (IAg) en la educación universitaria está requiriendo durante los últimos años que tanto el profesorado como el alumnado adquiera unas competencias para garantizar su uso adecuado y ético (Llorens-Largo et al., 2023). En esta línea, no solo los centros universitarios deben disponer de esta adecuada formación, sino que también los docentes de los centros de Educación Primaria e Infantil deben conocer las fortalezas de la IA, sus limitaciones y su correcta implementación en el aula (Kimura et al., 2023).

De este modo, la creciente incorporación de la inteligencia artificial (IA) en la educación superior ha generado múltiples beneficios en la personalización del aprendizaje. Sin embargo, aún se desconoce en qué medida los futuros docentes, en concreto, los estudiantes de los grados de Maestro en Educación Infantil y Primaria utilizan estas herramientas en sus prácticas académicas cotidianas. Dado que este alumnado tendrá un papel fundamental en la integración pedagógica de la IA en sus futuras aulas, resulta necesario investigar su nivel de uso, apropiación y percepción de estas tecnologías como parte de su formación, lo cual permitirá orientar mejoras curriculares y fortalecer las competencias digitales del profesorado en formación. Por tanto, el objetivo del presente estudio consiste en conocer el uso que realiza el alumnado de los grados de Maestros de Educación Infantil y Primaria de la IAg a la hora de elaborar los trabajos de clase, estableciendo la siguiente hipótesis: el alumnado universitario utilizará mayoritariamente la inteligencia artificial para realizar su trabajo de forma más eficiente

2. MÉTODO

2.1. Descripción del contexto y de los participantes

La muestra del presente estudio está compuesta por un total de 288 estudiantes de los grados de Maestro de Educación Infantil y Primaria de los cursos primero, tercero y cuarto.

Debido a que el alumnado de estos grados realiza una gran cantidad de trabajos en grupo se les incluyó un apartado en las prácticas para que describieran el proceso de elaboración de la práctica y las aplicaciones que utilizaron. De este modo, cada una de las respuestas al cuestionario se trata de una respuesta conjunta entre todos los miembros del grupo de la práctica, por lo que no se puede extraer la diferencia entre sexos o edades de la muestra, tan solo el curso en el que se encuentra cada grupo. No se incluyeron en este estudio datos de los estudiantes de 2º curso puesto que se tuvo la oportunidad de contar con la colaboración del docente encargado de dichos grupos para este trabajo, por lo que se optó por excluirlos en esta ocasión.

Por tanto, este estudio cuenta con un total de 141 respuestas, una por cada uno de los grupos formados para cada práctica realizada, como se puede observar en la tabla 1.

Tabla 1. Número de grupos participantes divididos por curso.

	Primero	Tercero	Cuarto	Total
Nº de grupos	27 (19.2%)	75 (35.2%)	39 (27.7%)	141 (100%)

Nota: Elaboración propia.

2.2. Instrumentos

El instrumento en sí consta de una sola pregunta insertada dentro de uno de los apartados de cada una de las prácticas realizadas a lo largo del curso. En dicho apartado se les propone responder a la pregunta: "Si habéis usado inteligencia artificial para la realización de la práctica, ¿qué aplicaciones habéis utilizado? ¿Por qué?", siendo dicha pregunta de formato abierto y con la capacidad de recoger tres tipos de información distinta para cada uno de los grupos: el uso o no de IA durante el trabajo, el tipo de IA utilizado y el tipo de uso que se le ha dado, extrayendo, de ese modo, toda la información necesaria.

2.3. Procedimiento

La recogida de la información se realizó de manera presencial y grupal, una vez finalizada la práctica, a través de un breve cuestionario cumplimentado digitalmente. El cuestionario se encontraba incluido dentro de cada una de las prácticas realizadas por los grupos. Siguiendo los criterios de anonimato, voluntariedad y ética marcados por la Universidad de Alicante, se procedió a utilizar entre 10 y 15 minutos de las sesiones para que el alumnado contestara las cuestiones.

La evaluación del contenido obtenido tendrá un carácter cuantitativo para las dos primeras variables (uso de IA y tipo de IA utilizada). La primera de las dos con valores comprendidos entre 0 y 1 (sí o no) y la segunda ha variado en función de las respuestas del alumnado, quedando distribuida del 0 al 6 con el siguiente orden, respectivamente: sin uso, no se especifica, ChatGPT, Gémini, DeepL, Whastapp, ZeroGPT. La primera de las opciones se utiliza para aquellos grupos que no han hecho uso de la IA, mientras que la segunda opción refiere a aquellos que sí que la han utilizado, pero no mencionan el nombre de la herramienta utilizada.

Por su parte, la tercera de las variables (tipo de uso de la IA), al ser de tipo cualitativo, se ha codificado en función de las respuestas obtenidas en cuatro opciones distintas: generación de contenido, búsqueda de información, gestión de texto y no se especifica.

Algunos ejemplos del contenido cualitativo incluido en cada código son los siguientes: generación de contenido: "Cabe destacar que la inteligencia artificial también nos ha ayudado en la creación de algunas de las imágenes para representar al infante en la presentación, sin mostrar su cara real."; fuente de inspiración: "La inteligencia artificial, en particular *ChatGPT*, fue utilizada como herramienta de apoyo para obtener sugerencias y generar ideas para el diseño de algunas de las actividades implementadas."; gestión de texto: "Se ha pedido a *Gemini* que algunos textos que estaban escritos en primera persona fueran redactados de manera impersonal".

2.4. Análisis de datos

Para la codificación del contenido cualitativo de las respuestas a la pregunta de los estudiantes se utilizó la herramienta AQUAD 8.

Por otro lado, los análisis descriptivos y de frecuencia se obtuvieron a partir de la herramienta estadística SPSS versión 28.0.

3. RESULTADOS

Los resultados de esta investigación se dividieron en tres aspectos diferentes a partir de las respuestas obtenidas por los estudiantes.

En la tabla 2 se encuentra el primero de ellos, que hace referencia a la frecuencia de uso o no uso de la IAg en función del curso. Se tiene en cuenta para este apartado el hecho de haber usado o no IAg, pero no la cantidad de veces que se utilizó durante el desarrollo de la práctica, o si se usaron diferentes modelos con diferentes objetivos. En este sentido, destaca el alumnado de primero como el que más porcentaje de grupos utilizó durante las prácticas (70.4%), mientras que el alumnado que menos la utilizó para sus trabajos fue el de tercero (42.7%). Por su parte, el alumnado de cuarto también obtuvo altas puntuaciones, aunque más bajas que las del primer cuso (64.1%). En el conjunto global, se obtuvo que más de la mitad del alumnado de entre todos los cursos usó en algún momento IAg para el desarrollo de algún aspecto de sus trabajos (53.9%).

Tabla 2. Frecuencia de uso de IAg realizado en función del cruso.

Uso	Primero (27)	Tercero (75)	Cuarto (39)	Total (141)
Usa IAg	19 (70.4%)	32 (42.7%)	25 (64.1%)	76 (53.9%)
No usa IAG	8 (29.6%)	43 (57.3%)	14 (35.9%)	65 (46.1%)

Nota: Elaboración propia.

En segundo lugar, en la tabla 3 se muestra el tipo de IAg utilizada por los estudiantes para saber cuáles modelos de inteligencia artificial eran los más habituales. De este modo, ChatGPT se convirtió en el más utilizado, con el 79.5% de porcentaje de uso, seguido de DeepL (9.7%), Gémini (1.2%), WhatsApp (1.2%) y ZeroGPT (1.2%), más un porcentaje del 7.2% de estudiantes que no especificaron el modelo utilizado. Para este caso, sí que se consideró cuando algún grupo utilizó diferentes modelos de IAg en una misma práctica como entradas diferentes.

Tabla 3. Tipo de IAg utilizada en función del curso.

Tipo de IAg utilizada	Primero (24)	Tercero (32)	Cuarto (27)	Total (83)
ChatGPT	13 (54,2%)	31 (96,9%)	22 (81,5%)	66 (79,5%)
DeepL	8 (33,3%)	0	0	8 (9,7%)
Gémini	0	0	1 (3,7%)	1 (1,2%)
WhastApp	0	0	1 (3,7%)	1 (1,2%)
ZeroGPT	1 (4,2%)	0	0	1 (1,2%)
No se especifica	2 (8,3)	1 (3,1%)	3 (11,1%)	6 (7,2%)

Nota: Elaboración propia.

Por último, la tabla 4 contiene los resultados para el tipo de uso realizado de la IAg en función del curso, para lo que también se tuvieron en cuenta los diferentes usos realizados en una misma práctica con cada modelo. El uso más habitual en el conjunto global fue para "gestión de texto", con un 60.7% del total de usos, siendo "fuente de inspiración" la segunda con un 24.7% y "generación de contenido" la última con un 12.4%. Un 2.2% del alumnado no especificó su uso. Sin embargo, si lo seccionamos por cursos, este orden cambia. En primero, la primera opción sigue siendo "gestión de texto" con un 76.2%, mientras que "generación de contenido" sube al segundo lugar con el 19% y "fuente de inspiración" queda última con 4.8%. En el tercer curso, la gestión de texto sigue dominando con un 82.4%, mientras que la segunda opción fue "fuente de inspiración" con un 17.6%, ninguna de las otras dos opciones tuve uso en este curso. Por último, en cuarto curso la primera opción fue "fuente de inspiración" con un 44.1%, mientras que "gestión de texto" aparece detrás con un 29.4%, dejando a "generación de contenido" la última con un 20.6%.

Tabla 4. Tipo de uso de la IAg realizado en función del curso.

Tipo de uso	Primero (21)	Tercero (34)	Cuarto (34)	Total (89)
Generación de contenido	4 (19%)	0	7 (20,6%)	11 (12,4%)
Fuente de inspiración	1 (4,8%)	6 (17,6%)	15 (44,1%)	22 (24,7%)
Gestión de texto	16 (76,2%)	28 (82,4%)	10 (29,4%)	54 (60,7%)
No especifica	0	0	2 (5,9%)	2 (2,2%)

Nota: Elaboración propia.

4. DISCUSIÓN Y CONCLUSIONES

El objetivo de este estudio consiste en conocer tanto la frecuencia como los hábitos de uso más habituales de la IAg entre el alumnado de educación universitaria de los grados de Magisterio en Educación Infantil y Primaria. El hecho de que más de la mitad de los estudiantes (53,9%) haya utilizado herramientas de IAg en algún momento de su formación refleja una tendencia alineada con la expansión general del uso de esta tecnología en contextos educativos universitarios (Chu et al., 2022). Este hallazgo evidencia una progresiva apropiación de recursos tecnológicos en la práctica académica, lo cual resulta congruente con la necesidad de formar a futuros docentes competentes digitalmente, tal como proponen Llorens-Largo et al. (2023) y Kimura et al. (2023).

La hipótesis de esta investigación queda confirmada, puesto que la opción más utilizada en general por todos los grupos fue la de "Gestión de texto", siendo un 60,7% del total y también siendo la opción mayoritaria si la desglosamos por grupos, exceptuando el de cuarto curso, donde "Fuente de inspiración" se convirtió en la opción más escogida con el 44,1%). Este tipo de uso está de acuerdo con Álvarez-Herrero (2024), puesto que se puede insertar dentro de la categoría de "rapidez y eficiencia" en el desempeño del trabajo, pudiendo comparar el uso de la IAg en la redacción de un texto con el de una calculadora para agilizar la realización de operaciones matemáticas.

Resulta especialmente relevante que el alumnado de primer curso, a pesar de tener menor experiencia universitaria, sea quien más recurre a herramientas de IAg, lo que puede evidenciar una mayor predisposición inicial al uso exploratorio, posiblemente influenciada por la novedad de la herramienta o su accesibilidad percibida (Gupta & Chen, 2022).

Respecto al tipo de uso, la categoría dominante, la gestión de texto (60,7%), se relaciona directamente con las funciones más comunes ofrecidas por herramientas como ChatGPT, DeepL o incluso ZeroGPT, lo cual corrobora estudios previos que destacan el papel de la IA en la reformulación, síntesis o corrección de redacciones académicas (Mousavi et al., 2021; Popenici & Kerr, 2017). Sin embargo, el bajo porcentaje de estudiantes que utiliza estas herramientas para generar contenido desde cero (12,4%) parece reflejar una percepción todavía limitada de su potencial creativo, en contraste con estudios como los de Lu et al. (2021) y Yang et al. (2021), quienes evidencian la capacidad de la IA para generar propuestas, preguntas o textos originales en el ámbito universitario.

Un hallazgo destacable se encuentra en la variación del uso según el curso: mientras que la "generación de contenido" tiene una presencia más destacada en cuarto curso (20,6%) y primero (19%), en tercero no se utiliza en absoluto. Esta distribución apunta a posibles diferencias en la cultura digital o las exigencias académicas de cada etapa, y sugiere la importancia de una formación progresiva y contextualizada sobre las posibilidades de la IAg a lo largo del grado. Asimismo, el hecho de que

en cuarto curso "fuente de inspiración" supere a "gestión de texto" como uso más frecuente (44,1%) puede evidenciar un acercamiento más reflexivo y crítico hacia el uso de la IA, lo cual resulta prometedor para una futura integración ética y pedagógica en las aulas de Educación Infantil y Primaria.

El estudio presenta varias limitaciones que deben tenerse en cuenta al interpretar los resultados. En primer lugar, el análisis se realizó a partir de grupos de estudiantes y no de respuestas individuales, lo que impide conocer el uso personal de la IAg, así como realizar diferencias en función del sexo o la edad, quedando como único factor diferenciador el curso al que pertenece cada grupo, que no se puede considerar representativo de la edad de los participantes que, además, en este caso, solo ha sido posible contar con el alumnado de 1°, 3° y 4°, quedando fuera el grupo de 2°. Además, al utilizar una única pregunta abierta autodeclarativa incluida en las prácticas, existe riesgo de subregistro, ambigüedad y deseabilidad social en las respuestas. La muestra presenta una distribución desigual por curso, con sobrerrepresentación del alumnado de tercero. Por último, la codificación del contenido cualitativo, aunque sistemática, puede verse afectada por la interpretación subjetiva del equipo investigador, especialmente en categorías solapadas como "gestión de texto" y "generación de contenido".

En suma, los resultados obtenidos ponen de manifiesto la progresiva integración de la IAg en la práctica académica de los futuros docentes, aunque también revelan desigualdades en su uso, escasa diversificación en los modelos empleados y una necesidad clara de formación más intencionada y crítica. Estos hallazgos respaldan la pertinencia de avanzar hacia una inclusión transversal de la IA en los planes formativos de las titulaciones docentes, de forma que el alumnado no solo acceda a estas herramientas, sino que también desarrolle competencias para su implementación pedagógica responsable en contextos educativos reales.

5. REFERENCIAS

- Álvarez-Herrero, J.-F. (2024). Opinión del alumnado universitario de educación sobre el uso de la IA en sus tareas académicas. *European Public & Social Innovation Review*, 9, 1–18. https://doi.org/10.31637/epsir-2024-534
- Cardenas-Cobo, J., Puris, A., Novoa-Hernandez, P., Galindo, J. A., & Benavides, D. (2020). Recommender Systems and Scratch: An Integrated Approach for Enhancing Computer Programming Learning. *IEEE Transactions on Learning Technologies*, 13(2), 387–403. https://doi.org/10.1109/TLT.2019.2901457
- Chiu, T. K. F. (2021). A Holistic Approach to the Design of Artificial Intelligence (AI) Education for K-12 Schools. *TechTrends*, 65, 796–807. https://doi.org/10.1007/s11528-021-00637-1/Published
- Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. *Computers and Education: Artificial Intelligence*, *4*, 100118. https://doi.org/10.1016/J. CAEAI.2022.100118
- Chiusole, D., Stefanutti, L., Anselmi, P., & Robusto, E. (2020). Stat-Knowlab. Assessment and Learning of Statistics with Competence-based Knowledge Space Theory. *International Journal of Artificial Intelligence in Education*, *30*(4), 668–700. https://doi.org/10.1007/s40593-020-00223-1
- Chu, H.-C., Hwang, G.-H., Tu, Y.-F., & Yang, K.-H. (2022). Roles and research trends of artificial intelligence in higher education: A systematic review of the top 50 most-cited articles. *Australasian Journal of Educational Technology*, *38*(3), 38.

- Gupta, S., & Chen, Y. (2022). Supporting Inclusive Learning Using Chatbots? A Chatbot-Led Interview Study. *Journal of Information Systems Education*, 33(1), 98–108.
- Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. *Computers and Education: Artificial Intelligence*, *1*, 100001. https://doi.org/10.1016/J.CAEAI.2020.100001
- Khalfallah, J., & Ben Hadj Slama, J. (2019). The effect of emotional analysis on the improvement of experimental e-learning systems. *Computer Applications in Engineering Education*, 27(2), 303–318. https://doi.org/10.1002/cae.22075
- Koć-Januchta, M. M., Schönborn, K. J., Tibell, L. A. E., Chaudhri, V. K., & Heller, H. C. (2020). Engaging With Biology by Asking Questions: Investigating Students' Interaction and Learning With an Artificial Intelligence-Enriched Textbook. *Journal of Educational Computing Research*, *58*(6), 1190–1224. https://doi.org/10.1177/0735633120921581
- Lu, O. H. T., Huang, A. Y. Q., Tsai, D. C. L., Yang, S. J. H., Lu, O. H. T., Huang, A. Y. Q., Tsai, D. C. L., & Yang, S. J. H. (2021). Expert-Authored and Machine-Generated Short-Answer Questions for Assessing Students' Learning Performance. *Educational Technology and Society*, *24*(3), 159–173.
- Mavrikis, M., Geraniou, E., Gutierrez Santos, S., & Poulovassilis, A. (2019). Intelligent analysis and data visualisation for teacher assistance tools: The case of exploratory learning. *British Journal of Educational Technology*, *50*(6), 2920–2942. https://doi.org/10.1111/bjet.12876
- Mousavi, A., Schmidt, M., Squires, V., & Wilson, K. (2021). Assessing the Effectiveness of Student Advice Recommender Agent (SARA): the Case of Automated Personalized Feedback. *International Journal of Artificial Intelligence in Education*, 31(3), 603–621. https://doi.org/10.1007/s40593-020-00210-6
- Mubarak, A. A., Cao, H., & Zhang, W. (2022). Prediction of students' early dropout based on their interaction logs in online learning environment. *Interactive Learning Environments*, *30*(8), 1414–1433. https://doi.org/10.1080/10494820.2020.1727529
- Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. *Research and Practice in Technology Enhanced Learning*, *12*(1). https://doi.org/10.1186/s41039-017-0062-8
- Qian, Y., Li, C. X., Zou, X. G., Feng, X. Bin, Xiao, M. H., & Ding, Y. Q. (2022). Research on predicting learning achievement in a flipped classroom based on MOOCs by big data analysis. *Computer Applications in Engineering Education*, 30(1), 222–234. https://doi.org/10.1002/cae.22452
- Rutner, S. M., & Scott, R. A. (2022). Use of Artificial Intelligence to Grade Student Discussion Boards: An Exploratory Study. *Information Systems Education Journal (ISEDJ)*, 20(4). https://isedj.org/;https://iscap.info
- Tomasevic, N., Gvozdenovic, N., & Vranes, S. (2020). An overview and comparison of supervised data mining techniques for student exam performance prediction. *Computers and Education*, 143. https://doi.org/10.1016/j.compedu.2019.103676
- Yang, A. C. M., Chen, I. Y. M., Flanagan, B., & Ogata, H. (2021). Automatic Generation of Cloze Items for Repeated Testing to Improve Reading. *Educational Technology & Society*, *24*(3), 147–158. https://www.researchgate.net/publication/352169946
- Zhang, Z., & Xu, L. (2022). Student engagement with automated feedback on academic writing: a study on Uyghur ethnic minority students in China. *Journal of Multilingual and Multicultural Development*. https://doi.org/10.1080/01434632.2022.2102175

2. Píldoras educativas de análisis matemático en entornos digitales¹

Arroyo, A.R.; Belén, P.; Castillo, C.; García-Castaño, F.; Muñoz, M.P.; Navarro, J.C.; Sepulcre, J.M.

RESUMEN

El aprendizaje de asignaturas universitarias vinculadas con el análisis matemático suele presentar grandes dificultades para el estudiantado, lo que hace necesaria la incorporación de recursos docentes que faciliten la comprensión de sus conceptos clave. En este contexto, este trabajo tiene como objetivo principal identificar errores frecuentes en el aprendizaje de dichas materias y elaborar materiales que sirvan de base para generar publicaciones específicas en redes sociales, como X, Instagram, Facebook, TikTok y YouTube. La fase de publicación constituye el tramo final de un proceso cuidadosamente planificado por el profesorado y un egresado colaborador. Como conclusión principal, se constata que el uso de redes sociales para compartir ciertos temas, en forma de píldoras matemáticas, resulta muy bien valorado por estudiantes y usuarios. En definitiva, estas prácticas divulgativas se revelan como herramientas motivadoras y efectivas para favorecer la asimilación de conceptos y resultados fundamentales, además de estimular el interés por los contenidos matemáticos. Asimismo, esta experiencia pone de manifiesto la importancia de integrar lenguajes y formatos propios de la comunicación digital en la enseñanza superior, fomentando un aprendizaje más dinámico, participativo y conectado con la realidad tecnológica actual.

PALABRAS CLAVE: Píldoras matemáticas, análisis matemático, detección de errores, redes sociales.

1. INTRODUCCIÓN

Las dificultades que surgen en la transición de la educación secundaria a la universidad están ampliamente documentadas y no son exclusivas del contexto español (Gueudet, 2008). La comunidad científica reconoce que este paso supone un reto importante tanto para el alumnado como para el profesorado. En particular, esta situación es aún más desafiante en lo relativo a los contenidos matemáticos en los que está contextualizado este trabajo. De hecho, a pesar de que el estudiantado que accede a los estudios universitarios de nuestro país ha superado con éxito todas las etapas educativas previas, son numerosos los estudios —entre ellos el Libro Blanco de las Matemáticas, (2020, p. 50)— que muestran que las matemáticas siguen representando uno de los principales focos de dificultad.

Tal como se desprende de los resúmenes anuales de calificaciones en distintos grados universitarios de la rama científica –véase, por ejemplo, Nueda et al. (2017) –, el aprendizaje de asignaturas relacionadas con el análisis matemático presenta una notable dificultad. En este contexto, resulta fundamental el uso de recursos educativos orientados a identificar las dificultades más habituales en

¹ El presente trabajo, realizado por profesorado de la Universidad de Alicante, ha contado con una ayuda del Programa de Redes de investigación en docencia universitaria del Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2023). Ref. 6058.

la comprensión de conceptos y resultados clave. A este respecto, cabe destacar diversos trabajos previos realizados por algunos miembros de este mismo grupo (Navarro et al., 2008; Sepulcre, 2017a; Sepulcre, 2017b; Sepulcre, 2018).

En este mismo contexto, y no solo para asignaturas de primer curso, la combinación de prácticas docentes tradicionales con el uso complementario de redes sociales contribuye a captar la atención del estudiantado, e incluso la de otros usuarios. Sin embargo, para lograr un impacto real, los contenidos deben estar presentados con claridad y eficacia. Algunos trabajos del profesorado del Grado en Matemáticas de la UA que abordan esta temática son los de (Conde et al., 2016; Dubon et al., 2017 y Mulero et al., 2012.)

En particular, la elaboración de material docente –interactivo o no– y la realización de vídeos, ya sean breves o más extensos en función del canal utilizado, pueden convertirse en una valiosa fuente de motivación y en una herramienta educativa eficaz para facilitar la asimilación de contenidos y resultados clave. A este respecto, resulta de interés la referencia (Castillo, I., Alberich, J., 2017), que analiza estrategias de difusión de contenidos y actividad en redes sociales. En nuestro contexto de trabajo, un aspecto esencial para desarrollar dichas estrategias y buenas prácticas es la detección de los errores de aprendizaje más frecuentes, los cuales deben seleccionarse cuidadosamente y visibilizarse en las fases previas a su publicación.

A partir de todo lo anterior, el principal objetivo de este proyecto fue la elaboración de documentos de trabajo y la publicación de determinados contenidos en redes sociales, presentados en forma de píldoras, que ayuden al estudiantado a comprender y asimilar los conceptos y resultados más complejos de las asignaturas del área de análisis matemático incluidas en este estudio.

2. MÉTODO

2.1. Descripción del contexto y de los participantes

Este trabajo forma parte del proyecto de Innovación Educativa "Píldoras de Análisis Matemático en redes" (código 6058) incluido en el programa de Redes de Investigación en Docencia Universitaria (cursos 2023-24 y 2024-25) de la Universidad de Alicante.

La aplicación práctica se ha llevado a cabo especialmente en el contexto de algunas asignaturas del área de Análisis Matemático del grado en Matemáticas de la UA, en concreto "Análisis de una Variable Real I" (primer curso, primer semestre, alrededor de 100 matriculados), "Análisis de una Variable Real II" (primer curso, segundo semestre, alrededor de 100 matriculados) y "Análisis de Variable compleja" (tercer curso, primer semestre, alrededor de 50 matriculados), en cuya impartición participan miembros de la red. Tales asignaturas son de 6 créditos ECTS con 4 horas semanales de clase presencial.

Como en cualquier otra universidad, las asignaturas de análisis matemático de primer curso del Grado en Matemáticas suponen un escollo para el estudiantado de nuevo ingreso. Todos los profesores integrantes de la red pertenecen al Departamento de Matemáticas de la Facultad de Ciencias de la UA. La mayoría de los miembros de la red son profesores vinculados a las asignaturas de Análisis Matemático incluidas en la red, en algunos casos con una amplia experiencia sobre los errores de aprendizaje que los estudiantes suelen tener en el estudio de los contenidos y resultados propios de estas asignaturas (de hecho, han formado parte de otras redes en convocatorias anteriores encaminadas a estudiar y diseñar estrategias docentes para solventar las dificultades que existen en el proceso de transición de la educación secundaria a la universidad). También se ha seleccionado como integrante

de la red a un estudiante de máster (actualmente estudiante de doctorado), egresado del Grado en Matemáticas de la UA, que ha experimentado los errores comunes que se suelen dar en el aprendizaje de las asignaturas de análisis y ha sido elegido para que aporte su visión como estudiante que ha tenido que afrontar dificultades en la comprensión de los contenidos matemáticos específicos de análisis matemático, no solo en las asignaturas de primer curso sino también en una asignatura más avanzada de tercer curso.

2.2. Instrumentos

En este trabajo se han empleado diferentes instrumentos de recogida de información en torno a las nociones, metodologías y procedimientos de dificil comprensión o adquisición para el estudiantado. El primero de ellos se basa en la propia experiencia de los profesores que imparten las asignaturas en las que se enmarca este trabajo, acumulada a lo largo de varios cursos. Esta se apoya en datos procedentes de la interacción con el estudiantado, los resultados de las pruebas de evaluación, y el análisis del material bibliográfico utilizado. El segundo instrumento es la colaboración de un egresado reciente del Grado en Matemáticas, actualmente estudiante de doctorado e integrante del proyecto, cuya aportación se ha canalizado a través de reuniones con el coordinador de la red y documentos de trabajo compartidos con el resto de los miembros. A ello se suma la visión directa del estudiantado que asiste a clase. El tercer instrumento es la asistencia y participación en jornadas y sesiones temáticas relacionadas con la docencia y la divulgación científica, con el fin de identificar estrategias y buenas prácticas aplicables a la innovación docente. El cuarto instrumento es el feedback recibido tras las publicaciones, a partir de los datos sobre visualizaciones y comentarios registrados en los perfiles utilizados con este fin.

2.3. Procedimiento

El procedimiento utilizado ha respondido a las siguientes fases:

- 1. Detección inicial de nociones, metodologías y procedimientos de difícil comprensión o adquisición para el estudiantado. Esta primera fase se ha llevado a cabo principalmente con la ayuda del estudiante que forma parte del proyecto, cuya perspectiva difiere de la del resto de miembros de la red, ya que es un recién egresado del Grado en Matemáticas (con un expediente destacado).
- 2. Descripción detallada de las deficiencias detectadas y sus propuestas de subsanación (a cargo del profesorado que forma parte del proyecto).
- 3. Selección de los contenidos descriptivos a mostrar, especialmente los relativos a las dificultades encontradas en el proceso de aprendizaje propio de las asignaturas seleccionadas en el proyecto (a cargo del profesorado). Una buena parte de estos contenidos se compone de un listado concreto de errores, gazapos, pecados matemáticos, etc. (relacionados con las asignaturas elegidas para la red) que se pueden exponer de forma breve para realizar posteriormente publicaciones (con limitación de caracteres) en los perfiles de X (antiguo Twitter), y compartidos posteriormente en Instagram o Facebook. Otros contenidos elegidos están más enfocados a la realización de vídeos para compartir a través de YouTube y TikTok.
- 4. Preparación, realización y edición del material docente concreto para su uso en redes sociales, en particular el de los vídeos (a cargo del profesorado con la colaboración de su estudiantado).

- 5. Publicación en redes sociales del material preparado (a cargo del profesorado del proyecto que gestione las cuentas de las redes sociales).
- 6. Valoración de los resultados obtenidos, incluyendo el alcance de las publicaciones efectuadas en redes sociales (cantidad de visualizaciones, número de seguidores, comentarios, etc.).

3. RESULTADOS

3.1. Detección de dificultades

Tras la implementación de las tres primeras fases del procedimiento descrito anteriormente, en la primera parte de esta sección mostraremos algunas dificultades encontradas en el estudio de los conceptos y resultados propios del área del análisis matemático, desglosados por las tres asignaturas escogidas para la red. Este listado constituye solo un breve resumen o una muestra de los documentos de trabajo que han sido elaborados en las dos primeras fases.

En lo que respecta a las asignaturas "Análisis de una variable real I" y "Análisis de una variable real II", los ítems que se han incluido en el listado realizado se refieren particularmente a conceptos y resultados que una gran parte del alumnado de primer curso del grado en Matemáticas en la UA no ha asimilado correctamente en su etapa formativa previa, y otros que resultan ser un desafío para el estudiantado en su aprendizaje, ya sea por su falta de base matemática, la dificultad, o por el (quizá poco) tiempo de dedicación en clase. En realidad, una buena parte de los conceptos de estas asignaturas no son novedosos para el alumnado, pero sí es la primera vez que se introducen formalmente, lo que supone un reto a la hora de asimilar el lenguaje matemático y de saber expresar sus razonamientos de forma general, abstracta y con rigor (y con las técnicas de demostración indispensables). Algo similar sucede con los ejercicios prácticos, ya que los estudiantes están acostumbrados a resolver mecánicamente muchos ejercicios del mismo tipo, pero ahora deben asumir que algunos problemas no tienen una solución directa que puedan obtener de forma automática, ya que se requiere de un razonamiento previo.

3.1.1. Análisis de una variable real I

Algunos ítems concretos detectados en los contenidos de "Análisis de una variable real I" (con cuatro bloques de contenidos) son los siguientes:

- Las demostraciones de algunos resultados del primer bloque que son consecuencia del axioma del supremo se consideran co•mo poco intuitivas. En concreto, esto ocurre con el resultado de que todo subconjunto no vacío de los números reales acotado superiormente tiene supremo, con la densidad de los racionales (o los irracionales) en los reales o con la propiedad arquimediana.
- Los resultados concernientes a las potencias (enteras, reales y fraccionarias) y raíces *n*-ésimas recurren en muchas ocasiones a los conceptos de supremo e ínfimo, que cuestan de asimilar por el estudiantado. Además, algún resultado concreto de esta parte tiene una demostración larga y complicada para seguir desde el punto de vista del estudiantado.
- La dificultad de los ejercicios del primer bloque de la asignatura reside, principalmente, en la utilización concreta del método de inducción y otros resultados teórico-prácticos sobre ínfimos y supremos.
- Algunas indeterminaciones que se estudian en los bloques II y IV son nuevas para el estudiantado, en concreto 1^{∞} , 0^{0} y ∞^{0} , y su resolución debe ser razonada y rigurosa.

- Las demostraciones del teorema de Bolzano-Weierstrass y del criterio de Stolz son poco intuitivas y se ayudan de un gran uso de notación.
- Complicación en el entendimiento de los resultados que conducen a definir el número *e* y sus propiedades.
- La dificultad de los ejercicios del segundo bloque se encuentra principalmente en el cálculo de determinados límites de sucesiones (ya sea por definición o usando los criterios estudiados en clase) y en el estudio de las condiciones necesarias para la convergencia de una sucesión (tanto de forma teórica como práctica).
- El estudio de las propiedades topológicas de los conjuntos de números reales del bloque III (con los conceptos de conjunto abierto, cerrado, compacto, adherente...) supone un primer contacto del estudiantado con el área de la topología, cuyos resultados no se asimilan en muchas ocasiones hasta que no se llega a cursos superiores.
- La dificultad de los ejercicios del tercer bloque se encuentra en el cálculo de algunos límites y en otros ejercicios teórico-prácticos sobre la continuidad y derivabilidad de las funciones. En particular, se debe incidir en ejercicios en los que la función está definida a trozos y el cálculo de los limites laterales de su derivada en los puntos de cambio de la expresión algebraica.
- Una dificultad importante es que los conceptos y resultados de trigonometría básica no suelen ser conocidos por la mayoría de los estudiantes, lo que afecta a varias asignaturas (particularmente las incluidas en la red).
- Debido a su excesivo uso en la etapa de bachillerato, muchos estudiantes acuden sistemáticamente a la utilización de la regla de l'Hôpital para la resolución de límites. Sin embargo, el estudiantado debe aprender a utilizar también otras propiedades (en ocasiones más sencillas para resolver problemas) como las funciones equivalentes en un punto (infinitésimos) o los distintos criterios estudiados en el tercer bloque de la asignatura.
- El concepto de diferencial, los teoremas de Taylor (con resto) y los desarrollos limitados de diferentes funciones son contenidos del cuarto bloque complicados de asimilar por parte del estudiantado, lo que, además, genera dificultades para su aplicación en los problemas de este bloque.
- Los resultados relativos a la función inversa, como la existencia y propiedades de continuidad y derivabilidad, requieren de un mayor tiempo de dedicación para que el estudiantado sepa utilizarlos también en los ejercicios teórico-prácticos.

3.1.2. Análisis de una variable real II

Algunas dificultades concretas detectadas en los contenidos de "Análisis de una variable real II" (con cinco bloques de contenidos) son las siguientes:

- El enfoque de algunos resultados teóricos concretos del primer bloque se hace complicado para el estudiantado. En concreto, el del principio de condensación, la relación directa existente entre el criterio de la raíz y el criterio del cociente, el producto de Cauchy de dos series numéricas o los teoremas de Abel y Mertens.
- Se requiere un estudio completo del carácter de convergencia de las series a partir de los criterios vistos en clase. De hecho, se debe conocer y saber aplicar todos los criterios de convergencia para poder concluir bien en ciertos ejemplos concretos. En particular, el estudiantado debe tener clara

- (desde el principio) la condición necesaria para la convergencia de una serie y el hecho de que una cantidad finita de términos no influye en el carácter de convergencia (pero sí en la suma).
- Se requiere cierta habilidad en el cálculo de las sumas de series convergentes a partir de los ejemplos vistos en clase para sumas de series convergentes geométricas, telescópicas, aritmeticogeométricas, hipergeométricas..., algunos de los cuales son más complicados.
- Para el buen manejo de las sucesiones y series de funciones se debe haber asimilado con anterioridad el primer bloque de la asignatura (para cada valor en el dominio de la función se tiene una sucesión o serie numérica).
- El importante criterio de Weierstrass para la convergencia uniforme de series de funciones necesita de la acotación correcta de cada término de la serie por el término de una serie numérica convergente. Por ello, muchas veces se debe llevar a cabo un estudio de los extremos relativos de cada término de la serie para poder encontrar dicha acotación, lo que genera dificultades entre un buen número de estudiantes.
- Se hace necesario conocer con anterioridad los resultados relativos al teorema de Taylor (visto en la asignatura previa) y las series de Taylor (como caso particular de las series de potencias). Una errónea base en este aspecto también dificulta el entendimiento de estos importantes contenidos del segundo bloque de la asignatura.
- Una parte del contenido del tercer bloque ya es conocida por el estudiantado: primitivas e integrales indefinidas, primitivas inmediatas de funciones elementales y la integración por partes o cambios de variable sencillos. Sin embargo, este tema es mucho más amplio y sirve para la adquisición de conocimiento sobre integrales de otras funciones racionales, además de funciones trigonométricas, irracionales, cuadráticas y binomiales, para lo que se aprenden las técnicas pertinentes como los métodos de reducción, Hermite y alemán, que conllevan cierta dificultad entre los estudiantes.
- Algunos cambios de variable que permiten calcular primitivas e integrales definidas no se intuyen a simple vista, por lo que el estudiantado debe practicar bastante para ir adquiriendo habilidades en esta dirección. De hecho, para el correcto aprendizaje de los contenidos del tercer bloque se debe adquirir una gran habilidad en el cálculo de integrales para identificar cuál es el mejor método de resolución, proponer cambios de variable adecuados, realizar transformaciones algebraicas de la función a integrar para aplicar fórmulas conocidas..., así que los principales desafíos a la hora de resolver los ejercicios propuestos están relacionados con estos aspectos, además de la facilidad de cometer gazapos y errores en los cálculos.
- El contenido del cuarto bloque de la asignatura es mayoritariamente novedoso para el estudiantado y supone su primer contacto con la teoría de integración, motivo por el que la parte teórica es densa y se caracteriza por su riqueza de resultados formales que requieren de un esfuerzo extra de estudio. Algunos ejemplos son el primer teorema fundamental del cálculo (que sirve de conexión entre los conceptos de derivabilidad e integrabilidad), la regla de Barrow (que da una fórmula para el cálculo de integrales definidas), el primer y el segundo teorema de la media, la versión integral del teorema de los valores intermedios, la fórmula integral para el resto de Taylor o la modelización de problemas de áreas (como el cálculo del área de la región comprendida bajo la gráfica de una función acotada no negativa o el cálculo del área delimitada entre dos o más gráficas), longitudes y volúmenes de sólidos en el espacio o cuerpos de revolución.

- El estudiantado debe saber distinguir entre las dos definiciones de funciones integrables Darboux y Riemann, aunque sean equivalentes en el caso de que la función sea acotada en su intervalo de definición.
- La novedad y el tratamiento formal de los contenidos teóricos del quinto bloque hace que el estudiantado tenga ciertas dificultades en su comprensión. Es la primera vez que el estudiantado estudia formalmente la noción de integral impropia como una extensión de la integral de Riemann a funciones no necesariamente acotadas definidas en intervalos semiabiertos, abiertos o no acotados.
- Hay bastante similitud entre el estudio de las series numéricas y de las integrales impropias, por lo que las dificultades que se deben afrontar en el estudio de la convergencia de las integrales impropias se repiten respecto a las que ya se estudiaron con anterioridad.

3.1.3. Análisis de variable compleja

Algunas dificultades concretas detectadas en los contenidos de "Análisis de variable compleja" (con cinco bloques de contenidos) son las siguientes:

- El contenido teórico del primer bloque es introductorio y sin grandes dificultades, pero hay que prestar especial atención a la definición y propiedades de las funciones multivaluadas, y en particular a la del logaritmo complejo y potencias que son ampliamente utilizadas a lo largo de toda la asignatura.
- La dificultad en los ejercicios del primer bloque reside, principalmente, en la prueba de algunas desigualdades en las que intervienen el módulo, argumento o el conjugado de ciertos números complejos; el uso de las ecuaciones de Cauchy-Riemann para encontrar la forma de las funciones enteras que verifican algunas propiedades; y, por último, la resolución de ecuaciones trigonométricas complejas.
- El segundo bloque está caracterizado por la presencia de un gran número de teoremas, con sus correspondientes demostraciones, que los alumnos deben asimilar rápidamente para usarlos en las pruebas de otros resultados. En especial, la teoría general de Cauchy suele ser un apartado que se hace complicado para los estudiantes. Es necesario un buen manejo de la teoría de integración, las sucesiones, las series numéricas y el cálculo de límites del análisis real.
- El principal desafío de los ejercicios del segundo bloque es la aplicación de la fórmula de Cauchy para el círculo, así como cuestiones de cálculo tedioso relativo al cálculo de integrales y las series de potencias.
- El tercer bloque está caracterizado por la presencia de destacados teoremas de la variable compleja con demostraciones de cierta dificultad (como el caso del teorema de Casorati-Weierstrass) y el manejo de series de potencias con posibles exponentes negativos.
- Los problemas del tercer bloque se caracterizan principalmente por su practicidad, pero requieren del conocimiento de todos los resultados vistos de forma paralela en la parte teórica.
- El cuarto bloque relativo a la teoría de residuos hace uso de muchos conceptos matemáticos y recursos del análisis real de una variable real que el alumno debe recordar de las asignaturas de primer curso para el buen desarrollo de este apartado temático.
- El principal desafío práctico del quinto bloque es la aplicación de los teoremas de factorización, así como cuestiones de cálculo tedioso relativo a los productos infinitos, el radio de convergencia y el orden de una función entera.

3.2. Publicación en redes sociales

Las fases 4 y 5 del procedimiento expuesto con anterioridad hacen referencia a la publicación de ciertos contenidos en redes sociales conectados con las dificultades detectadas en las fases anteriores, pero elegidos adecuadamente para cumplir con los objetivos marcados (a modo de píldoras matemáticas). Por esta razón, varias de las publicaciones se enfocan en mostrar algunos errores y gazapos que se cometen en ciertos razonamientos, pero otros son de carácter más general y enfocados en formato vídeo.

Una gran parte de las publicaciones se han efectuado en la red social X (antiguamente Twitter). Cualquier usuario de la red puede visualizar tales entradas o tweets a través de la etiqueta o hashtag identificativo de la red: #PíldorasAnálisisMatemáticoUA o #Píldoras_AM_UA (que en ocasiones se acompañaban de los hashtags #AUVRI, #AUVRII o #AVC correspondientes a las asignaturas de las que somos profesores). Se animaba especialmente a los estudiantes de las asignaturas a consultar tales publicaciones a través del propio profesorado involucrado en la red. Estas publicaciones también han sido compartidas de forma automática en las historias de Instagram en los perfiles de los profesores involucrados en la red.

En el caso de TikTok, algunos miembros de la red ya utilizábamos una cuenta iniciada en cursos anteriores: https://www.tiktok.com/@matservilleta, que se ha vuelto a utilizar para la difusión de vídeos y publicaciones. Los vídeos creados para esta ocasión tratan de responder a las preguntas de "por qué" y "para qué" de ciertos contenidos seleccionados en el contexto de la historia de las matemáticas, proporcionando contexto a las dificultades detectadas. En el aula, durante el desarrollo de las asignaturas que forman parte de esta red, trabajamos, argumentamos y demostramos cada uno de estos contenidos. Sin embargo, esas teorías, teoremas y resultados tienen su origen en la búsqueda de soluciones a antiguos problemas. Estos materiales nos acercan a esa historia, a sus "situaciones de aprendizaje", a esas cuestiones que, una vez resueltas, han dado forma a la matemática tal y como la conocemos hoy.

Además, se han publicado varios videos en YouTube con comentarios explicativos de algunas dificultades expuestas en la sección previa sobre cuestiones relativas a la trigonometría. Estos vídeos se pueden ver en el canal https://www.youtube.com/@cristiangodoy-aotc de uno de los miembros de la red.

A continuación, mostramos una tabla resumen con el número de visualizaciones e interacción recibida en las distintas redes sociales utilizadas en la red.

Tabla 1. Número de visualizaciones e interacciones recibidas en cada una de las publicaciones de la red efectuadas en las distintas redes sociales con los hashtags identificativos #PíldorasAnálisisMatemáticoUA o #Píldoras_AM_UA (a fecha de 11/06/2025)

	Publicaciones	Fecha de publicación	Visualizaciones	Likes / Veces compartido	Comentarios/ feedback
	https://x.com/JMSepulcre/sta- tus/1838862504920863128	25/09/2024	294	7/3	0
	https://x.com/JMSepulcre/sta- tus/1855291258585088005	09/11/2024	1099	18 / 2	2
	https://x.com/JMSepulcre/sta- tus/1866170695987700206	09/12/2024	493	6/3	0
	https://x.com/JMSepulcre/sta- tus/1879184195517333681	14/01/2025	732	17 / 5	2
	https://x.com/JMSepulcre/sta- tus/1881743056367464486	21/01/2025	1865	25 / 7	1
	https://x.com/JMSepulcre/sta- tus/1885267782075302053	31/01/2025	676	12 / 0	6
	https://x.com/JMSepulcre/sta- tus/1888560729751802258	09/02/2025	886	19 / 6	1
	https://x.com/JMSepulcre/sta- tus/1888513670004519004	09/02/2025	3266	66 / 15	1
	https://x.com/JMSepulcre/sta- tus/1891043086371070321	16/02/2025	742	15 / 2	0
	https://x.com/JMSepulcre/sta- tus/1893585337513086997	23/02/2025	1531	31 / 6	2
X	https://x.com/JMSepulcre/sta- tus/1897621181362004024	06/03/2025	797	11 / 4	0
(antiguo Twitter)	https://x.com/JMSepulcre/sta- tus/1899791482367750632	12/03/2025	512	11 / 3	0
	https://x.com/JMSepulcre/sta- tus/1901654004549173474	17/03/2025	338	6 / 2	0
	https://x.com/JMSepulcre/sta- tus/1905549926098239818	28/03/2025	304	11 / 1	0
	https://x.com/JMSepulcre/sta- tus/1909188149227487628	07/04/2025	2782	19 / 7	3
	https://x.com/JMSepulcre/sta- tus/1910592653412229333	11/04/2025	1852	47 / 8	2
	https://x.com/JMSepulcre/sta- tus/1911482768485466233	13/04/2025	2329	38 / 12	3
	https://x.com/JMSepulcre/sta- tus/1912132550270627893	15/04/2025	490	12 / 2	0
	https://x.com/JMSepulcre/sta- tus/1913251171835207925	18/04/2025	1966	34 / 7	0
	https://x.com/JMSepulcre/sta- tus/1913296721150611600	18/04/2025	1009	14 / 2	0
	https://x.com/JMSepulcre/sta- tus/1914022252129189909	20/04/2025	1352	22 / 5	1
	https://x.com/JMSepulcre/sta- tus/1918671135031570837	03/05/2025	995	20 / 6	1

	Publicaciones	Fecha de publicación	Visualizaciones	Likes / Veces compartido	Comentarios/ feedback
	https://www.tiktok.com/@matservilleta/video/7491707795402657046	10/04/2025	100	1	
	https://www.tiktok.com/@matservilleta/video/7491711013947968790	10/04/2025	291	7	
	https://www.tiktok.com/@matservilleta/video/7491711704238198038	10/04/2025	260	3	
	https://www.tiktok.com/@matservilleta/video/7491712752960965910	10/04/2025	268	1	
	https://www.tiktok.com/@matservilleta/video/7500661868521180438	04/05/2025	779	10	1
	https://www.tiktok.com/@matservilleta/video/7500662868187073814	04/05/2025	266	10	
	https://www.tiktok.com/@matservilleta/video/7500663973767875862	04/05/2025	258	7	1
	https://www.tiktok.com/@matservilleta/video/7500666644289654038	04/05/2025	268	2	
TikTok	https://www.tiktok.com/@matservilleta/video/7500667863250930966	04/05/2025	303	3	
	https://www.tiktok.com/@matservilleta/video/7503141258106260758	11/05/2025	196	2	
	https://www.tiktok.com/@matservilleta/video/7503144181817183510	11/05/2025	120	1	
	https://www.tiktok.com/@matservilleta/video/7505893701231725846	18/05/2025	273	2	
	https://www.tiktok.com/@matservilleta/video/7505895941640162582	18/05/2025	245	2	
	https://www.tiktok.com/@matservilleta/video/7505899043634023702	18/05/2025	210	1	
	https://www.tiktok.com/@matservilleta/video/7505900945952361750	18/05/2025	242	2	
	https://www.tiktok.com/@matservilleta/video/7505903605417905430	18/05/2025	235	3	
	https://www.tiktok.com/@matservilleta/video/7506509137329671446	20/05/2025	51	2	
	https://www.tiktok.com/@matservilleta/video/7506512164312632598	20/05/2025	141	1	
VT -1	https://youtu.be/y0jEuCIEMeU	23/10/2024	59	5	0
YouTube	https://youtu.be/rz7v9PWc7sY	23/10/2024	26	1	2

Conviene indicar que las publicaciones en X se comparten de forma automática también en las stories de Instagram y Facebook, por lo que la cantidad de visualizaciones es mayor que la presentada en la tabla anterior.

4. DISCUSIÓN Y CONCLUSIONES

La experiencia de varios de los profesores involucrados en este trabajo ha puesto de manifiesto la necesidad de diseñar nuevas estrategias que faciliten la detección de errores y el entendimiento de ciertos contenidos del área de análisis matemático. Las propias calificaciones y resultados de evaluación reflejan que existen dificultades para seguir determinados conceptos en las asignaturas analizadas, los cuales representan retos que el estudiantado afrontar progresivamente. En este sentido, cualquier avance que contribuya a superar dichas dificultades es valorado positivamente por los estudiantes.

En cualquier caso, somos conscientes de la alta dificultad que conlleva diseñar material específico con contenidos matemáticos exigentes que, además, logre captar la atención del estudiantado y convertirse en recursos de aprendizaje eficaces. No obstante, hemos logrado crear y difundir en redes sociales una serie de publicaciones que se alinean con los objetivos de esta red de trabajo. A la vista de todo lo expuesto en la sección anterior, el alcance de este material —en términos de visualizaciones e impresiones— ha sido satisfactorio, particularmente entre el estudiantado de las asignaturas implicadas, que lo valora positivamente como apoyo para su aprendizaje.

A la luz de los resultados obtenidos, se concluye que el trabajo desarrollado en el marco de esta red –y especialmente los materiales elaborados– constituye una valiosa herramienta didáctica para facilitar la comprensión y asimilación de conceptos clave en las asignaturas de análisis matemático seleccionadas. Esta experiencia pone de manifiesto que un uso inteligente y bien orientado de las redes sociales puede convertirse en un recurso eficaz para reforzar la enseñanza de contenidos matemáticos complejos. Además, los materiales generados resultan de utilidad tanto para el profesorado como para el estudiantado, y podrán aprovecharse en cursos posteriores.

La alta implicación del profesorado de las asignaturas relacionadas con determinados contenidos matemáticos abre la posibilidad de seguir avanzando en los objetivos planteados por esta red de trabajo, mediante su futura extensión a otras materias, tanto del Grado en Matemáticas como de otros programas académicos.

5. REFERENCIAS

- Areces, S.A., Martín de Diego, D., Chacón, T., Curbera, G., Marcellán, F., Siles, M. (Coords.) (2020). Libro blanco de las matemáticas, 2020. Editorial Centro de Estudios Ramón.
- Castillo, I., Alberich, J. (2017). Análisis de estrategias de difusión de contenidos y actividad en redes sociales en revistas de divulgación científica: factores de interacción, visibilidad e impacto. *Estudios sobre el Mensaje Periodístico. Ediciones Complutense*, 23 (2), 1045-1056. https://doi.org/10.5209/ESMP.58031
- Conde, J.M., Molina, M.D., Mulero, J., Segura, L., Sepulcre, J.M., Guillén, M. (2016). Red para la difusión y divulgación de las matemáticas. En Álvarez, J. D.; Grau, S.; Tortosa, M.T. (coords.), *Innovaciones metodológicas en docencia universitaria: resultados de investigación* (pp. 867-879). Alicante: Universidad de Alicante, Vicerrectorado de Estudios, Formación y Calidad, Instituto de Ciencias de la Educación (ICE). ISBN: 978-84-608-4181-4.
- Dubon, E., Molina, M.D., Mulero, J., Segura, L., Sepulcre, J.M. (2017). Actividades de divulgación relacionadas con las matemáticas. En Roig-Vila, R. (coord.), *Memorias del Programa de Redes-I3CE de calidad, innovación e investigación en docencia universitaria. Convocatoria 2016-17* (pp.1481-1491). Alicante: Universidad de Alicante, Instituto de Ciencias de la Educación (ICE). ISBN: 978-84-697-6536-4.

- Gueudet, G., (2008). Investigating the secondary-tertiary transition. *Educational Studies in Mathematics*, 6(73), 237-254. https://doi.org/10.1007/s10649-007-9100-6
- Navarro, J.C., Segura, L., Sepulcre, J.M. (2010). About questionnaires as an active teaching method. En *INTED 2010 Proceedings CD*, 2137-2142, Valencia: IATED. ISBN: 978-84-613-5538-9.
- Nueda, M.J. et al. (2017). Seguimiento Grado en Matemáticas. Curso 16-17. En Roig-Vila, R. (coord.), *Memorias del Programa de Redes-ICE. De calidad, innovación e investigación en docencia universitaria. Convocatoria 2016-17* (pp. 120-131). Alicante: Universidad de Alicante-ICE. ISBN: 978-84-697-6536-4.
- Mulero, J., Segura, L., Sepulcre, J.M. (2012). Un nuevo enfoque divulgativo para la enseñanza de las matemáticas en la docencia universitaria. En Álvarez, J. D.; Pellín, N.; Tortosa, M.T. (coords.), *X Jornadas de redes de investigación en docencia universitaria. La participación y el compromiso de la comunidad universitaria* (pp. 2035-2048). Alicante: Universidad de Alicante.
- Sepulcre, J.M. (2017). Detección de errores conceptuales y operativos cometidos por los alumnos en una primera asignatura de análisis matemático Parte I. RUA. Recuperado de http://hdl. handle.net/10045/70868.
- Sepulcre, J.M. (2017). Detección de errores conceptuales y operativos cometidos por los alumnos en una primera asignatura de análisis matemático Parte II. RUA. Recuperado de http://hdl. handle.net/10045/71082.
- Sepulcre, J.M. (2018). Estrategias docentes en las primeras asignaturas de Análisis Matemático del grado en Matemáticas. En *VII Congreso Iberoamericano de Educación Matemática. Libro de Actas*, CB-81 (pp. 173-184). Madrid: FESPM. ISBN: 978-84-945722-3-4.

3. De la Técnica a la Comunicación: Integración de IA Generativa y Formatos de Congreso en la Enseñanza de la Ingeniería¹

Aznar Gregori, Fidel¹; Rizo Aldeguer Ramón¹; Arques Corrales, Pilar¹; Pujol López, Mar¹; Compañ Rosique, Patricia¹; Botana Gómez, Javier³; Lozano Ortega, Miguel Angel¹; Mora Lizán, Francisco José¹; Puchol García, Juan Antonio¹; Pujol López, M^a José²

¹Dpto. de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, ²Dpto. de Matemática Aplicada, Universidad de Alicante, ³Servicio de informática - Área de desarrollo de aplicaciones. Universidad de Alicante

RESUMEN

La rápida evolución de la Inteligencia Artificial (IA), y en particular de los modelos generativos, presenta un desafío y una oportunidad para la educación superior en ingeniería. Este trabajo describe una innovación pedagógica implementada en la asignatura "Sistemas Inteligentes" del Grado en Ingeniería Informática, una materia cursada por más de 200 estudiantes. La intervención se articula sobre un doble eje: por un lado, la integración curricular de herramientas de IA generativa como apoyo al aprendizaje y al desarrollo de proyectos; por otro, la inclusión de un mini-congreso científico, donde los estudiantes deben presentar sus resultados mediante un póster y una comunicación oral. Se analizan los resultados de una encuesta respondida por 150 estudiantes, que revelan una acogida muy positiva. Más del 85% del alumnado reporta beneficios directos en su aprendizaje, destacando una mayor eficiencia y una mejor comprensión conceptual. El análisis también identifica desafíos clave, como la necesidad de una formación específica en la formulación de "prompts" y el fomento del pensamiento crítico para evitar una dependencia superficial de la herramienta. Concluimos que este modelo dual no solo actualiza los contenidos técnicos, sino que también desarrolla competencias de comunicación esenciales, mostrando un alto potencial de transferencia a otras disciplinas STEM.

PALABRAS CLAVE: Inteligencia Artificial Generativa, Docencia en Ingeniería, Aprendizaje Activo, Comunicación Científica.

1. INTRODUCCIÓN

La Inteligencia Artificial (IA) ha trascendido el ámbito de la investigación para consolidarse como una tecnología de propósito general con un profundo impacto en la ciencia, la industria y la sociedad. La reciente democratización de los modelos de lenguaje de gran tamaño (LLM) y otras formas de IA generativa ha acelerado esta transformación, introduciendo herramientas que ya forman parte del día a día de millones de personas. Este nuevo paradigma impone una obligación ineludible a la educación superior, especialmente en las titulaciones de ingeniería: preparar a los futuros profesionales no solo para que comprendan estas tecnologías, sino para que las utilicen de manera eficaz, crítica y ética (UNESCO, s. f.).

¹ El presente trabajo ha contado con una ayuda del Programa de Redes de investigación en docencia universitaria del Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2024-26). Ref.: (6172)

En este contexto, la asignatura "Sistemas Inteligentes" se configura como un pilar fundamental en el Grado en Ingeniería Informática de la Universidad de Alicante. Representa, para la mayoría de los más de 200 estudiantes que la cursan anualmente, su "primera inmersión formal en los fundamentos de la IA". Como tal, su objetivo principal es cumplir con la competencia específica CE15 del plan de estudios: el «conocimiento y aplicación de los principios fundamentales y técnicas básicas de los sistemas inteligentes y su aplicación práctica». La asignatura abarca desde los métodos de búsqueda y la representación del conocimiento hasta el aprendizaje automático y la visión artificial, sentando las bases para futuras especializaciones.

Sin embargo, la metodología docente tradicional presentaba una doble problemática, identificada tanto por la experiencia del profesorado como por las demandas del sector profesional. Por un lado, se detectó una brecha persistente entre el conocimiento técnico del alumnado y sus habilidades de comunicación. Estudiantes con proyectos técnicamente excelentes a menudo mostraban dificultades para sintetizar sus resultados o argumentar la relevancia de su trabajo, a pesar de que la "capacidad para saber comunicar y transmitir los conocimientos" es un resultado de aprendizaje explícito de la titulación. El formato de evaluación de la parte teórica de la asignatura, centrado en una memoria escrita y un examen final, no parecía ser el vehículo más eficaz para desarrollar la oratoria y la capacidad de síntesis que exige el objetivo específico "desarrollar la madurez en la realización de informes y documentación útil".

Por otro lado, la industria tecnológica demanda con urgencia ingenieros que no solo dominen los fundamentos teóricos, sino que sepan colaborar, comunicar y utilizar las herramientas más avanzadas, entre las que la IA generativa se ha vuelto indispensable. Se hacía, por tanto, imperativo actualizar el enfoque pedagógico para alinear las competencias desarrolladas en el aula con las necesidades reales del entorno profesional, fomentando un aprendizaje más activo, autónomo y adaptado a las nuevas tecnologías.

Frente a este doble desafío, el presente trabajo describe una experiencia de innovación docente implementada durante el curso 2024-2025 en dicha asignatura. La intervención se articula sobre dos ejes estratégicos que responden directamente a la problemática detectada:

- 1. **Integrar el uso curricular de herramientas de IA generativa** como ChatGPT, GitHub Copilot o Claude, no como un sustituto del aprendizaje, sino como un andamiaje para la conceptualización, el desarrollo y la depuración de proyectos técnicos.
- 2. **Mejorar las competencias de comunicación científica y profesional** de los estudiantes, sustituyendo parte de la evaluación tradicional por un formato de mini-congreso científico donde los equipos deben presentar y defender sus proyectos mediante un póster y una comunicación oral.

Esta investigación analiza la percepción de esta nueva metodología dual a través de los datos recogidos en encuestas al alumnado, con el fin de validar su eficacia y proponer un modelo pedagógico transferible que prepare a los futuros ingenieros para los retos de un mundo tecnológicamente cambiante.

1.1. Estado del Arte

La integración de la Inteligencia Artificial Generativa (IA Generativa) en la educación superior está redefiniendo los paradigmas de enseñanza y aprendizaje, especialmente en disciplinas técnicas como la ingeniería (Arslan et al., 2024; Gonsalves, 2024; Tillmanns et al., 2025). La literatura académica

reciente ha explorado extensamente tanto el potencial como los peligros de incorporar herramientas como ChatGPT y Copilot en el aula.

Entre los beneficios más citados, destaca la capacidad de la IA para ofrecer un aprendizaje personalizado. Las herramientas generativas pueden analizar las respuestas de los estudiantes para identificar fortalezas y debilidades, creando contenido y ejercicios adaptados a sus necesidades individuales, algo difícil de lograr en clases numerosas. Esto se complementa con una mejora en la eficiencia y productividad de los estudiantes, quienes pueden usar la IA para generar ideas, obtener explicaciones alternativas, depurar código y resumir información compleja, liberando tiempo para centrarse en el pensamiento de alto nivel. Asimismo, diversos estudios señalan un impacto positivo en la creatividad y la iniciativa del alumnado.

No obstante, la adopción de estas tecnologías no está exenta de desafíos significativos. La principal preocupación es la fiabilidad y precisión de la información generada. Las «alucinaciones» de los modelos (respuestas incorrectas pero verosímiles) exigen que los estudiantes desarrollen un escepticismo saludable y la capacidad de verificar los datos. Otro riesgo ampliamente documentado es la promoción de un aprendizaje superficial y la pérdida de pensamiento crítico si los estudiantes dependen excesivamente de la herramienta sin esforzarse por comprender los conceptos subyacentes. Finalmente, surgen importantes dilemas éticos, como el uso deshonesto para el plagio y la necesidad de establecer directrices claras sobre su utilización en las evaluaciones (Kovari, 2025).

Tradicionalmente, la formación en ingeniería ha priorizado las competencias técnicas. Sin embargo, el mercado laboral actual exige perfiles profesionales integrales, donde las habilidades transversales y en particular la comunicación, son determinantes para el éxito.

La capacidad de un ingeniero para comunicar de forma clara y efectiva es fundamental en múltiples facetas de su trabajo: desde la coordinación interna en equipos multidisciplinares hasta la presentación de ideas a clientes y otros actores no técnicos. De hecho, varios estudios indican que los proyectos de ingeniería con prácticas de comunicación efectivas tienen una probabilidad de éxito mayor (Ding et al., 2024). El ingeniero debe ser capaz de adaptar su mensaje, simplificar conceptos complejos mediante analogías y practicar la escucha activa para evitar malentendidos.

2. MÉTODO

El estudio se llevó a cabo siguiendo un diseño de investigación-acción, implementando una innovación docente y recogiendo datos para evaluar su impacto y refinar el proceso en futuras iteraciones.

2.1. Descripción del contexto y de los participantes

La experiencia se desarrolló en la asignatura "Sistemas Inteligentes" del Grado en Ingeniería Informática de la Universidad de Alicante durante el curso académico 2024-2025. Se trata de una asignatura obligatoria de tercer curso, con más de 200 estudiantes matriculados anualmente, que constituye para la mayoría su primera inmersión formal en los fundamentos de la Inteligencia Artificial. Los participantes en el estudio fueron el conjunto de estos estudiantes, de los cuales se obtuvo una muestra de 150 respuestas voluntarias para el análisis de datos mediante encuesta. Para la realización de los proyectos, los alumnos se auto-organizaron en equipos de 3 o 4 miembros a través de una hoja de cálculo compartida.

2.2. Instrumentos

Para la recogida y evaluación de datos se utilizaron los siguientes instrumentos:

- 1. Encuesta de Percepción. Se diseñó una encuesta anónima a través de Moodle que se distribuyó al finalizar el curso. El cuestionario combinaba preguntas cuantitativas con una escala Likert de 1 (totalmente en desacuerdo) a 5 (totalmente de acuerdo) y preguntas cualitativas abiertas para recoger opiniones, beneficios y críticas sobre la nueva metodología.
- **2. Póster Científico.** Como instrumento de evaluación del proyecto, cada equipo debía elaborar un póster científico en formato A1. Las normas del trabajo especificaban que el póster debía contener las siguientes secciones: título, autores, resumen, introducción, metodología, resultados, conclusiones y referencias. Adicionalmente, se exigía una sección donde se detallaran los modelos de IA utilizados y los prompts más relevantes diseñados durante la investigación.
- **3. Rúbrica de Evaluación de la Presentación Oral.** Se empleó una rúbrica para evaluar la defensa oral del proyecto durante el mini-congreso. Los criterios de evaluación incluían la calidad y rigor del trabajo presentado, la claridad expositiva y gestión del tiempo, la solvencia en la defensa y respuestas a las preguntas, y el grado de participación de cada miembro del equipo.

2.3. Procedimiento

El procedimiento se dividió en varias fases a lo largo del semestre:

Fase Inicial - Información. Al comienzo del curso, se informó a los estudiantes de la nueva metodología, explicando tanto el uso esperado de la IA generativa como el formato de evaluación final basado en un mini-congreso.

Fase de Desarrollo - Integración Guiada de la IA. Se animó al alumnado a utilizar herramientas como ChatGPT, GitHub Copilot o Claude en problemas concretos. Para fomentar un uso crítico, se realizaron actividades específicas. Por ejemplo, se les proporcionó un problema de lógica que las IAs suelen resolver con dificultad, para que pudieran constatar sus limitaciones. Asimismo, se les guio en el uso de la IA para implementar una red neuronal recurrente, facilitando así el aprendizaje de un concepto técnico complejo. Se requirió que los estudiantes documentaran los prompts utilizados en su informe final.

Fase de Evaluación - Mini-Congreso Científico. Se reemplazó la entrega de una memoria tradicional por un formato de congreso. Durante las últimas semanas del curso, se organizaron cuatro sesiones (una por cada grupo teórico) donde cada equipo presentó su trabajo. Las presentaciones consistieron en una comunicación oral de 5-7 minutos apoyada por el póster científico, seguida de un turno de preguntas por parte de los profesores. Los temas de los proyectos se centraron en la evaluación y comparación de diferentes modelos de IA en tareas como la traducción, la generación de código o el análisis de dilemas éticos.

Fase Final - Recogida de Datos. Tras la evaluación y calificación de los proyectos, se distribuyó la encuesta de percepción anónima para recoger los datos que se analizan en este trabajo.

3. RESULTADOS

El análisis de las 150 respuestas de la encuesta ofrece una visión rica y matizada de la experiencia del alumnado. La satisfacción general con la integración de la IA generativa es excepcionalmente alta, si bien se aprecian diferencias según el aspecto consultado.

3.1. Análisis Cuantitativo: Percepción del Alumnado

Los datos cuantitativos revelan una percepción muy positiva en los aspectos relacionados con la operatividad y la comprensión conceptual. Como se puede apreciar en la Figura 1, la gran mayoría de las respuestas se concentran en las puntuaciones 4 y 5 de la escala Likert para ítems como la comodidad de uso, la mejora de la eficiencia o la ayuda para entender conceptos teóricos. Más del 92% del alumnado se muestra de acuerdo o totalmente de acuerdo en que la IA mejoró su eficiencia. De forma similar, un 88% confirma que le ayudó a comprender mejor la teoría.

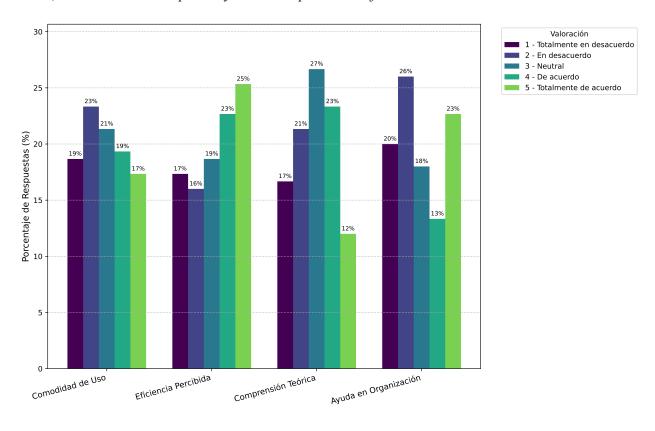


Figura 1. Valoración de la experiencia con IA Generativa (Distribución de respuestas en escala Likert 1-5).

Por contra, los ítems relacionados con competencias de autorregulación y planificación obtuvieron una valoración más moderada. Solo el 56% considera que la IA le ayudó significativamente a estructurar y organizar su trabajo, y un 62.6% sintió que le motivó a profundizar en los temas. Estos datos sugieren que el alumnado tiende a usar la IA como una herramienta de consulta y ejecución, más que como un asistente para la planificación estratégica. La Tabla 1 resume las puntuaciones medias de los ítems más relevantes.

Tabla 1. Valoración media de la experiencia con IA Generativa (escala 1-5).

Ítem de Valoración	Puntuación Media	% Acuerdo (4 o 5)	
Comodidad de uso de la herramienta	4.44	92.6%	
Mejora de la eficiencia en el aprendizaje	4.37	92.7%	
Comprensión de capacidades y limitaciones de la IA	4.26	87.3%	

Ítem de Valoración	Puntuación Media	% Acuerdo (4 o 5)	
Comprensión de conceptos teóricos de la asignatura	4.17	88.0%	
Mejora en la formulación de preguntas	4.15	79.4%	
Motivación para profundizar en los temas	3.79	62.6%	
Ayuda en la estructuración y organización del trabajo	3.62	56.0%	

3.2. Análisis Cualitativo: Beneficios y Desafíos

El análisis de las respuestas abiertas permite profundizar en la percepción del alumnado. Los beneficios más citados se centran en la mejora directa del proceso de aprendizaje:

- 1. Acelerar la comprensión de conceptos (43 menciones). Los estudiantes valoran la capacidad de la IA para actuar como un "tutor socrático", ofreciendo explicaciones alternativas, metáforas y ejemplos de código personalizados que les permitieron superar barreras conceptuales.
- 2. Aumento de la eficiencia (38 menciones). Se destaca el ahorro de tiempo en tareas mecánicas (código repetitivo, búsqueda de sintaxis) y la posibilidad de dedicar más esfuerzo al diseño de la solución y al pensamiento de alto nivel.
- 3. Resolución inmediata de dudas (28 menciones). La disponibilidad constante de la herramienta para resolver bloqueos o dudas puntuales fue un factor clave para mantener el ritmo de trabajo y reducir la frustración.

Junto a los beneficios, el alumnado demostró una notable conciencia crítica sobre los desafíos y limitaciones. La principal queja fue la generación de respuestas incorrectas o código con errores sutiles ("alucinaciones"), lo que refuerza la necesidad de una supervisión y validación constantes. Asimismo, muchos reconocieron el riesgo de un aprendizaje superficial si la herramienta se usa como una "caja negra" sin un esfuerzo por comprender los fundamentos.

Finalmente, las recomendaciones de los estudiantes para futuros compañeros son un excelente indicador del aprendizaje meta-cognitivo que tuvo lugar. Las más frecuentes fueron: aprender a formular preguntas efectivas (26 menciones), usar la IA como un copiloto y no como el piloto (21 menciones) y verificar y contrastar siempre la información generada (múltiples menciones).

Más allá de los datos cuantitativos, el análisis de las respuestas abiertas de la encuesta ofrece una visión rica y matizada de la experiencia de los estudiantes. Este análisis temático revela no solo los beneficios percibidos, sino también una notable conciencia crítica sobre los desafíos y las mejores prácticas para el uso de la IA generativa en su formación.

3.3. Análisis Estadístico de la Percepción del Alumnado

Para complementar el análisis descriptivo inicial y obtener una comprensión más profunda de la percepción del alumnado, se realizó un análisis estadístico inferencial utilizando los datos numéricos de la encuesta. Este análisis se centró en dos áreas: la correlación entre las distintas percepciones y la comparación entre diferentes perfiles de estudiantes.

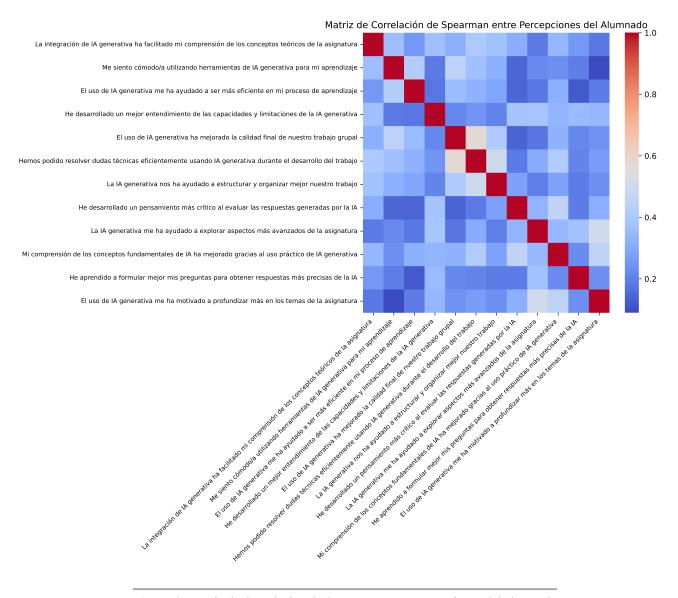


Figura 2. Matriz de Correlación de Spearman entre percepciones del alumnado

Con el objetivo de explorar las relaciones entre las diferentes facetas de la experiencia del alumnado, se calculó el coeficiente de correlación de Spearman (r_s) para todas las variables de la escala Likert. Se optó por este coeficiente no paramétrico al ser el más adecuado para datos de naturaleza ordinal.

La matriz de correlaciones reveló una red de relaciones positivas y significativas entre la mayoría de las percepciones, indicando una experiencia de usuario coherente. Se prestaron especial atención a dos hipótesis clave:

1. H1: relación entre comodidad y calidad percibida. Se analizó si existía una correlación entre la comodidad de los estudiantes al usar IA ("me siento cómodo/a...") y su percepción sobre la mejora en la calidad final de su trabajo ("el uso de IA generativa ha mejorado la calidad..."). El análisis arrojó un coeficiente de correlación positivo y moderado (r_s=0.4483). Este resultado, estadísticamente significativo, sugiere que a medida que aumenta la confianza y comodidad del estudiante con la herramienta, también lo hace su percepción de que esta tiene un impacto positivo en la calidad de sus entregas.

2. *H2*: relación entre pensamiento crítico y formulación de preguntas. Se investigó la conexión entre el desarrollo del pensamiento crítico al evaluar las respuestas de la IA ("he desarrollado un pensamiento más crítico…") y la mejora en la habilidad para formular preguntas ("he aprendido a formular mejor mis preguntas…"). Los resultados mostraron una correlación positiva aún más fuerte, indicando que el proceso de validar y cuestionar a la IA está directamente relacionado con el aprendizaje de cómo interactuar con ella de manera más efectiva, creando un ciclo de retroalimentación positiva.

Para investigar si las percepciones eran uniformes en todo el alumnado, se realizó un análisis de segmentación. Se definieron dos perfiles:

- **1.** Entusiastas de la IA (n=131): estudiantes que valoraron con 4 ("De acuerdo") o 5 ("Totalmente de acuerdo") tanto su comodidad de uso como la mejora de la eficiencia gracias a la IA.
- 2. Otros (n=18): el resto de los estudiantes que no cumplían ambos criterios.

El objetivo era determinar si existían diferencias significativas entre estos dos grupos en variables donde la percepción general fue más moderada, como la ayuda de la IA para la organización. Se comparó la percepción sobre la afirmación "La IA generativa nos ha ayudado a estructurar y organizar mejor nuestro trabajo" utilizando la prueba U de Mann-Whitney, adecuada para comparar dos grupos independientes con datos ordinales.

Consideramos que los resultados fueron reveladores. El grupo de *Entusiastas de la IA* reportó una media de 3.71 en esta afirmación, mientras que el grupo de *Otros* tuvo una media de 2.94. La prueba estadística confirmó que esta diferencia es estadísticamente significativa (U = 1639.5, p = 0.0052).

Dado que el valor p es inferior al nivel de significación estándar ($\alpha = 0.05$), se rechaza la hipótesis nula de que no hay diferencia entre los grupos. Esto indica que los estudiantes que se sienten más cómodos y eficientes con la IA (los "entusiastas") sí la perciben como una herramienta significativamente más útil para la estructuración y organización de sus proyectos en comparación con el resto de sus compañeros. Este hallazgo matiza la conclusión general y sugiere que el uso de la IA para tareas estratégicas, como la planificación, es más pronunciado en el subgrupo de usuarios más avanzado.

3 DISCUSIÓN Y CONCLUSIONES

Los resultados de esta investigación confirman la viabilidad y el alto grado de aceptación de la integración de la IA generativa en la docencia de la ingeniería. La alta satisfacción general y la percepción de una mayor eficiencia y comprensión conceptual validan el enfoque pedagógico propuesto. Sin embargo, el análisis profundo de los datos, tanto cuantitativos como cualitativos, permite ir más allá de esta validación inicial y extraer conclusiones de mayor calado sobre la naturaleza de la interacción estudiante/IA.

Más allá de la eficiencia, el resultado más significativo es la constatación de que el alumnado no adopta un rol pasivo frente a la herramienta. Al contrario, la experiencia fomenta el desarrollo de una notable conciencia crítica. Esta conciencia no es una mera anécdota; se sustenta en la fuerte correlación positiva (r_s =0.4907) encontrada entre el "desarrollo de un pensamiento más crítico" y el "aprendizaje para formular mejor las preguntas". Esto sugiere que el acto de dudar, verificar y contrastar las respuestas de la IA es precisamente el mecanismo que enseña al estudiante a interactuar con ella de forma más eficaz. Las propias palabras del alumnado, que definen la IA como un "copiloto" o un "pinche de cocina" que necesita supervisión constante, ilustran este posicionamiento activo y reflexivo.

El análisis también arroja luz sobre la distinción entre el uso táctico y estratégico de la IA. El hallazgo inicial de que la IA es menos valorada para tareas de alto nivel como la "estructuración y organización del trabajo" se ve matizado por el análisis de segmentación. Si bien la tendencia general es un uso más táctico (resolver dudas concretas, depurar código), el grupo de *Entusiastas de la IA* (n=131) sí percibe un valor significativamente mayor en estas tareas estratégicas que el resto de sus compañeros (M=3.71 vs M=2.94; p=0.0052). Esto sugiere la existencia de una curva de madurez: a medida que los estudiantes ganan confianza y fluidez con la herramienta, su uso evoluciona de la resolución de problemas puntuales a la asistencia en la planificación y organización del proyecto en su totalidad.

Quizás el resultado más valioso de la experiencia es el aprendizaje meta-cognitivo que los propios estudiantes extrajeron y formularon como consejos para sus futuros compañeros. Estas recomendaciones se pueden sintetizar en cinco puntos clave para el uso responsable y eficaz de la IA:

- 1. **Aprende a usarla bien.** La recomendación más repetida fue la necesidad de "aprender a realizar buenos prompts" e "investigar sobre la ingeniería de PROMPTS", pues de ello depende la calidad de la respuesta.
- 2. **Sé siempre crítico.** Los estudiantes insisten en "ser críticos con cada resultado obtenido y no confiar ciegamente en lo que nos ofrecen". La máxima es "verifica siempre la información generada".
- 3. Úsala como apoyo, no como solución. Se debe entender la IA como «una herramienta de apoyo, no como la solución definitiva». El objetivo es aprender, no solo entregar la tarea.
- 4. Comprende primero, pregunta después. Varios alumnos recomendaron entender primero las bases del problema y luego usar la IA para profundizar, pues de lo contrario «aprendes pero no tanto como se podría si se hace a la inversa".
- 5. **No delegues el pensamiento.** Como concluye un estudiante, «las generativas son una herramienta fantástica para aprender si se hace un buen uso de ellas», pero el esfuerzo intelectual no se puede delegar.

Por su parte, el formato de mini-congreso aborda con éxito la brecha de comunicación detectada, cumpliendo con resultados de aprendizaje explícitos de la titulación como la "capacidad para saber comunicar y transmitir los conocimientos". Al situar a los estudiantes en un contexto de evaluación auténtico que les obliga a sintetizar, diseñar información visualmente y defender sus ideas oralmente, se desarrollan competencias esenciales que una memoria escrita tradicional difícilmente puede fomentar.

En conclusión, esta experiencia docente demuestra que el modelo dual propuesto (integración de IA generativa y evaluación por competencias comunicativas) tiene un impacto muy positivo y sinérgico. Los estudiantes no solo mejoran su eficiencia y comprensión técnica, sino que, de manera crucial, desarrollan una alfabetización en IA crítica y funcional. Aprenden a colaborar con la tecnología de forma consciente, aprovechando su potencial y mitigando sus riesgos, al tiempo que adquieren habilidades de comunicación indispensables para su futuro profesional. Este modelo, por tanto, se presenta como un camino eficaz y transferible para formar a los profesionales de las disciplinas STEM que los retos actuales demandan.

Como trabajo futuro, planteamos varias líneas que surgen directamente de los hallazgos: desarrollar materiales formativos específicos sobre prompt engineering basados en las recomendaciones del alumnado; diseñar actividades que fomenten explícitamente el uso estratégico de la IA para acortar la brecha entre usuarios noveles y entusiastas; y realizar un estudio longitudinal para evaluar el impacto a largo plazo de las competencias de comunicación y pensamiento crítico adquiridas.

4. REFERENCIAS

- Arslan, B., Lehman, B., Tenison, C., Sparks, J. R., López, A. A., Gu, L., & Zapata-Rivera, D. (2024). Opportunities and challenges of using generative AI to personalize educational assessment. *Frontiers in Artificial Intelligence*, 7, 1460651.
- Ding, X., Shi, Q., & Xiao, C. (2024). Unveiling the Impact of Communication Network on Engineering Project Team Performance: The Interplay of Centralization and Tie Strength. *Psychology Research and Behavior Management, Volume 17*, 1515-1531. https://doi.org/10.2147/PRBM.S454292
- Gonsalves, C. (2024). Generative AI's Impact on Critical Thinking: Revisiting Bloom's Taxonomy. *Journal of Marketing Education*, 02734753241305980. https://doi.org/10.1177/02734753241305980
- Kovari, A. (2025). Ethical use of ChatGPT in education—Best practices to combat AI-induced plagiarism. *Frontiers in Education*, *9*, 1465703. https://doi.org/10.3389/feduc.2024.1465703
- Tillmanns, T., Salomão Filho, A., Rudra, S., Weber, P., Dawitz, J., Wiersma, E., Dudenaite, D., & Reynolds, S. (2025). Mapping Tomorrow's Teaching and Learning Spaces: A Systematic Review on GenAI in Higher Education. *Trends in Higher Education*, *4*(1), 2. https://doi.org/10.3390/higheredu4010002
- UNESCO. (s. f.). Recomendación sobre la Ética de la Inteligencia Artificial.

4. Student Perceptions of the Educational Use of Generative Artificial Intelligence: A Multidisciplinary Study

Carrasco-Rodríguez, Antonio; Aleson-Carbonell, Marian

University of Alicante

ABSTRACT

This study offers an empirical analysis of university students' perceptions regarding the educational use of generative artificial intelligence (GAI) tools, following their participation in learning activities designed by their instructors. A structured questionnaire was administered to 1,193 undergraduate and graduate students from two Spanish universities, representing a wide range of academic disciplines. This study involved the design and validation of a structured questionnaire through expert judgment and exploratory factor analysis. The instrument assessed seven key dimensions: familiarity, perceived usefulness, technical capabilities, attitude, ethical concerns, content quality, and overall evaluation. Results indicate a generally positive attitude towards GAI, particularly in terms of its usefulness for learning and pedagogical integration. However, skepticism persists concerning the reliability of AIgenerated content. Comparative analyses reveal significant differences based on gender, age, digital competence, academic field, and university. Students in Education and Social Sciences reported more favorable views, while more critical perspectives were found in Humanities and Science/Engineering, suggesting a strong influence of disciplinary cultures. The study provides robust empirical evidence on the actual impact of GAI in educational settings, highlighting the need for pedagogical strategies tailored to diverse student populations. It advocates for critically informed, creative, and ethically grounded models for integrating AI in higher education, sensitive to both learner diversity and institutional context.

KEYWORDS: student perceptions, generative artificial intelligence in education, higher education, teaching innovation, multidisciplinary approach.

1. INTRODUCTION

Artificial intelligence (AI) has captivated humanity since the mid-20th century, blending literary imagination with scientific advancement. From Asimov's 1942 short story "Runaround," with its famous laws of robotics, to the 1956 Dartmouth Conference where McCarthy coined the term "artificial intelligence" (Kaplan & Haenlein, 2019), AI has undergone alternating cycles of promise and skepticism. For decades, its progress was perceived as gradual and technical, with little direct impact on everyday life.

However, the launch of ChatGPT in 2022 marked a turning point. For the first time, a tool based on large language models (LLMs) became widely accessible, capable of generating coherent, context-sensitive responses in natural language (Brown et al., 2020; Aldossary et al., 2024; Aruleba et al., 2023; Elmotri et al., 2024; Strzelecki & ElArabawy, 2024). This unprecedented accessibility has bridged the gap between non-expert users and complex systems, challenging long-standing skepti-

cism such as that expressed by Lighthill (Oudeyer, 2018) and opening new possibilities for human—machine interaction (Duah & McGivern, 2024).

In education, particularly higher education, this transformation has been especially disruptive. Generative AI tools are reshaping how knowledge is produced, transmitted, and assessed (Bahroun et al., 2023; Borkovska et al., 2024; Chan & Hu, 2023; Fuchs, 2023). A growing body of research has explored their application in personalized learning, academic support, and human–AI collaboration (Carrasco-Rodríguez & Albero-Verdú, 2025; Chassignol et al., 2018; Haenlein & Kaplan, 2019; Bozkurt et al., 2021), while concerns persist regarding their impact on student agency, authorship, academic integrity, and the reliability of generated content (Kamoun et al., 2024; Lund et al., 2023; Shi et al., 2025; Huang & Rust, 2018).

These tensions reflect a deeper structural shift. Advances in AI not only challenge technical tasks, but increasingly intrude upon traditionally human capacities such as empathy, intuition, and critical thinking (Huang & Rust, 2018; Jarrahi, 2018). Within this transformative landscape, often framed as part of a fourth industrial revolution, educational institutions face the urgent task of redesigning curricula, methodologies, and ethical frameworks to prepare students for a society increasingly shaped by intelligent technologies.

Nevertheless, much of the current literature on AI in education remains speculative. While theoretical studies and potential-use analyses abound, there is a relative scarcity of empirical research exploring real-world pedagogical implementation in university settings (Bozkurt et al., 2021; Chassignol et al., 2018; Chen et al., 2020; Sullivan et al., 2023). Even among studies addressing student attitudes, most rely on general perceptions rather than structured, classroom-based experiences (Aldossary et al., 2024; Carrasco-Rodríguez, 2024; Jin et al., 2023; Wang et al., 2023).

Moreover, there is a clear need for multidisciplinary approaches that move beyond isolated studies by subject area or degree program. Few investigations have examined how generative AI is perceived when intentionally integrated into actual university courses, with instructor guidance, across diverse fields of knowledge (Aruleba et al., 2023; Koć-Januchta et al., 2022). This empirical gap hinders the development of effective, inclusive, and student-responsive educational models.

In response to this situation, the present study aims to empirically analyze university students' perceptions of the educational use of generative AI tools, following their participation in activities designed and implemented by their instructors within their respective courses.

Specifically, the study seeks to: (1) examine differences in perceptions based on sociodemographic variables (gender, age, digital competence); (2) compare evaluations across major academic domains (Education, Humanities, Social Sciences, Sciences, and Engineering); and (3) contrast results between two Spanish universities with distinct institutional profiles.

This work seeks to contribute robust empirical evidence to the emerging field of artificial intelligence in higher education, from a critical, context-aware, and multidisciplinary perspective. Rather than assuming abstract benefits or risks, it explores how students interpret their concrete experiences with generative AI in real-world, pedagogically framed contexts.

The study is the result of collaborative work by a network of 35 university instructors from various academic disciplines, engaged in pedagogical innovation with generative AI tools. The research was carried out under the "ICE Teaching Innovation Networks" program of the Institute of Educational Sciences at the University of Alicante (network code 6171), which provided funding and institutional support for its implementation.

2. METHODOLOGY

2.1. Study Context and Sample

This study adopts a quantitative, descriptive-comparative, and cross-sectional approach aimed at analyzing university students' perceptions of generative artificial intelligence tools following a real classroom-based learning experience. The research was conducted as part of a teaching innovation project during the 2024–2025 academic year at two Spanish universities: the University of Alicante (UA) and the International University of Valencia (VIU).

The sample consisted of 1,193 undergraduate and graduate students from a wide range of degree programs, including History, Law, Education, Nursing, Philology, Engineering, Economics, Translation and Interpreting, Marine Sciences, and Advertising and Public Relations. This diversity provides the study with a multidisciplinary perspective that reflects various fields of knowledge. Key sociodemographic and academic variables were collected, including gender, age, degree program, university, and self-perceived level of digital competence.

Participation was voluntary and anonymous, following informed consent. All procedures were approved by the Ethics Committee of the University of Alicante, in accordance with the General Data Protection Regulation (GDPR).

2.2. Instruments

Data were collected through a structured questionnaire consisting of 25 items, specifically designed for this study. The items were grouped into seven thematic dimensions: (1) familiarity with generative AI, (2) perceived usefulness for learning, (3) technical capabilities, (4) attitude toward its use, (5) ethical concerns and perceived risks, (6) content quality and reliability, and (7) overall evaluation of the experience.

All items were rated on a five-point Likert scale (1 = strongly disagree; 5 = strongly agree). Content validity was assessed through expert judgment using the Lawshe method, involving 20 university instructors specialized in educational innovation.

The questionnaire was administered via Google Forms after the completion of the AI-based activities, without collecting personal data and with no impact on students' academic evaluation.

2.3. Procedure

The AI-based activities were integrated into the regular coursework of the participating subjects and were designed by the instructors involved in the project. The tools used–primarily ChatGPT–served as learning support.

The tasks included summarizing, outlining, argumentative writing, idea reformulation, creative generation, and doubt resolution, always accompanied by instructional guidance and critical reflection. While implementation respected the specificities of each subject, all activities shared a common pedagogical and ethical framework.

Upon completion of the activities, instructors provided students with access to the questionnaire, having previously informed them about the study's objectives, the voluntary nature of participation, and the confidentiality of responses. The questionnaire was administered asynchronously to ensure freedom of response.

2.4. Data Analysis Techniques

Data analysis was conducted using descriptive and inferential statistical procedures, implemented through Python programming tools (including the pandas, scipy, seaborn, matplotlib, and factor_analyzer libraries). Empty responses were excluded without value imputation.

Internal reliability was assessed using Cronbach's alpha coefficient, and factorial validity was evaluated through the Kaiser-Meyer-Olkin (KMO) index and Bartlett's test of sphericity. An exploratory factor analysis with Varimax rotation was then performed to examine the instrument's latent structure.

Descriptive analysis included the calculation of means, standard deviations, and frequency distributions for each item and dimension. Group comparisons were carried out using Student's t-tests, one-way ANOVA, or non-parametric tests (Kruskal–Wallis), depending on the nature of the variables. Statistical significance was set at p < 0.05, and effect sizes were calculated when appropriate.

3. RESULTS

3.1. Reliability and Validity of the Instrument

The questionnaire used in this study was validated through expert judgment, applying the Lawshe method. From an initial pool of 50 items, 25 were selected based on a content validity index (CVI) greater than 0.78, ensuring clarity and representativeness across all thematic dimensions.

Regarding internal consistency, the overall Cronbach's alpha was $\alpha = 0.849$, indicating high reliability. The subscales by dimension also yielded satisfactory values, ranging from 0.730 to 0.827 in six out of the seven dimensions. Dimension 6 ("Quality and Reliability of AI-Generated Content") initially showed a low alpha ($\alpha = 0.179$). A detailed analysis revealed that two of its items (Questions 21 and 22) were reverse-worded compared to the others: higher scores indicated negative perceptions (greater need for verification, concern over bias), in contrast to Items 19 and 20, where higher scores reflected trust. This inconsistency generated negative internal correlations. After reverse-coding Items 21 and 22 to harmonize response interpretation, the alpha coefficient improved to $\alpha = 0.622$, a level considered acceptable for short exploratory scales.

Construct validity was confirmed through exploratory factor analysis (EFA), preceded by a KMO = 0.930 and a significant Bartlett's test of sphericity ($\chi^2 = 11,985.39$, p < 0.001), indicating a suitable matrix for factor analysis. The EFA, using Varimax rotation, revealed four main factors: (1) practical usefulness, (2) attitudes and ethics, (3) overall evaluation, and (4) prior familiarity. Two minor factors were also identified, related to content quality and skill development.

Finally, second-order statistics (skewness between -0.83 and -0.15; kurtosis between -0.22 and 0.98) indicated symmetrical response distributions with no significant bias.

Overall, the instrument demonstrated high global reliability, solid factorial validity, and consistent psychometric behavior, supporting the robustness of subsequent quantitative analyses.

3.2. Descriptive Analysis

The initial descriptive analysis revealed a generally favorable response pattern toward the educational use of generative artificial intelligence. Mean item scores ranged from 2.91 to 3.92 (on a 1-to-5 scale), with no clustering at the extremes or evidence of distributional bias. Standard deviations ranged from 0.74 to 1.08, indicating reasonable variability and suggesting that the instrument was effective in differentiating among students' perceptions.

When items were grouped by thematic dimensions, a clear trend emerged: the highest scores corresponded to attitudes toward the use of generative AI in education (Dimension 4), overall evaluation after the experience (Dimension 7), and the tool's perceived technical capabilities (Dimension 3), all with means near or above 3.7. These results reflect strong receptivity to AI when it is meaningfully integrated into the teaching and learning process.

In contrast, students' prior familiarity with these technologies (Dimension 1) received a low average score (M = 3.17), which aligns with the recent introduction of such tools in university settings. Even lower was the average for Dimension 6 (Quality and Reliability of AI-Generated Content), at 2.66, indicating more critical views regarding the accuracy and trustworthiness of AI-generated output.

Table 1. Standard Deviations by Questionnaire Dimension.

Dimension	Mean	Std. Dev.
1. Prior knowledge of generative AI	3.17	0.71
2. Usefulness for learning, skill development, and critical thinking	3.45	0.80
3. Technical capacity of generative AI to produce educational content	3.70	0.67
4. Personal attitude toward AI in educational contexts	3.80	0.75
5. Ethical concerns and perceived risks associated with AI in education	3.30	0.79
6. Quality and reliability of AI-generated content	2.66	0.58
7. Overall evaluation after the experience	3.79	0.64

Note. Scores range from 1 (strongly disagree) to 5 (strongly agree). Higher means indicate more favorable perceptions of generative AI in each dimension.

These results suggest that, despite varying initial levels of familiarity, direct engagement with generative AI promotes a positive attitude and favorable assessment of its usefulness. At the same time, the critical stance regarding content reliability demonstrates reflective awareness of the limitations of these tools—an aspect that will be key in interpreting the comparative data presented in the following section.

3.3. Group Comparisons

To identify differential patterns in student perceptions, comparative analyses were conducted based on sociodemographic and academic variables. Depending on the nature and distribution of the data, Student's t-tests, one-way ANOVA, and non-parametric tests (Kruskal–Wallis) were applied. The most statistically significant findings are presented below.

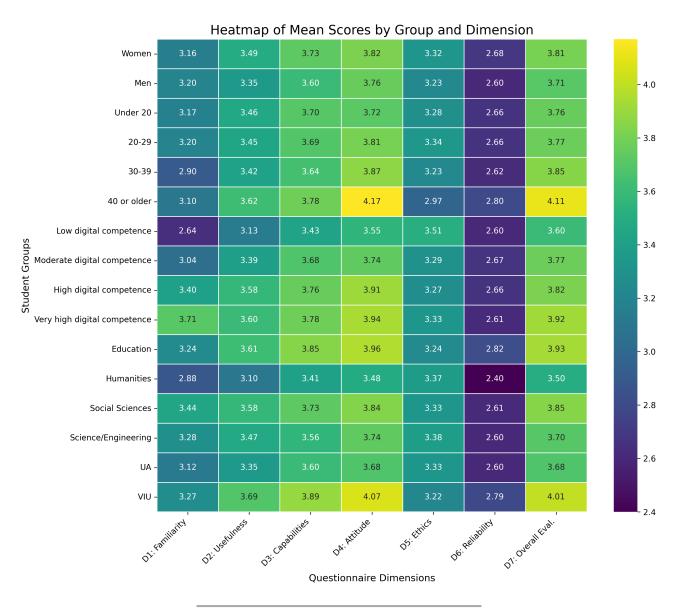


Figure 1. Heatmap. Mean Scores by Group and Dimension

Note. Scores range from 1 to 5. Higher scores indicate more favorable perceptions. Gender-Based Differences.

The gender-based analysis revealed significant differences in three dimensions: perceived usefulness for learning (Dimension 2), perceived technical capabilities of AI (Dimension 3), and overall evaluation after the experience (Dimension 7). In all three cases, scores were higher among women, suggesting greater receptivity to the educational use of generative AI in this group. No relevant differences were found in dimensions related to ethical concerns or content quality, indicating a shared critical evaluation across genders.

AGE-BASED DIFFERENCES

Age group comparisons revealed significant differences in prior familiarity with AI (D1), attitudes toward its educational use (D4), ethical perceptions and associated risks (D5), and overall evaluation (D7). Younger students (<20 years) reported greater familiarity, while intermediate age groups (30–49 years) expressed more favorable attitudes and higher overall ratings. Interestingly, the oldest

group (50+) displayed more critical views regarding ethics and risks, though the sample size for this subgroup was small, and findings should be interpreted with caution.

DIFFERENCES BY LEVEL OF DIGITAL COMPETENCE

A consistent pattern emerged across the data: the higher the students' self-perceived level of digital competence, the higher the mean scores across almost all dimensions. This relationship was particularly strong in dimensions related to AI familiarity (D1), usefulness for learning (D2), attitudes toward use (D4), and overall evaluation (D7). Only ethical perception (D5) and content quality assessment (D6) did not show significant variation based on this indicator. These results reinforce the idea that digital literacy plays a critical role in shaping students' experiences and perceptions of generative AI.

DIFFERENCES BY ACADEMIC FIELD

Degree programs were grouped into four academic domains: Education, Humanities, Social Sciences, and Science/Engineering. The analysis revealed significant differences across six of the seven questionnaire dimensions. Students in Education consistently reported the highest scores, particularly in attitudes toward AI (D4) and overall evaluation of the experience (D7). This positive response may be linked to their greater familiarity with innovative methodologies and the practice-oriented nature of teacher training programs.

Social Sciences students also demonstrated relatively high evaluations, especially regarding AI's usefulness for learning (D2) and its perceived technical capabilities (D3), suggesting alignment between generative AI tools and the academic formats commonly used in Law, Economics, or Communication.

In contrast, students in the Humanities reported the lowest self-perceived scores across five dimensions, displaying skepticism particularly in areas related to familiarity, technical usefulness, and content quality. This more critical stance may reflect a disciplinary focus on individual authorship, text interpretation, and personal creativity. Meanwhile, students in Science and Engineering, despite showing higher familiarity with AI (D1), expressed a more moderate and demanding attitude, especially concerning the reliability of AI-generated outputs (D6), likely due to the technical rigor emphasized in their training.

These differences across academic domains reflect distinct disciplinary logics that shape the perception and evaluation of AI tools. Understanding these profiles is essential for designing pedagogical strategies tailored to each field of knowledge, fostering AI integration that is sensitive to the epistemological, methodological, and cultural particularities of each discipline.

DIFFERENCES BY UNIVERSITY

Significant differences were found across all dimensions when comparing students from the University of Alicante (UA) and the International University of Valencia (VIU). The VIU group—comprising exclusively Master's students in Education—scored higher across all dimensions, with mean values exceeding 4.0 in both attitude and overall evaluation. In contrast, the UA cohort—composed of undergraduate students from diverse disciplines—was more heterogeneous and critical, particularly in the dimension concerning content quality and reliability (D6).

These differences should not be attributed solely to the institution, but rather to the combination of factors present in each context: academic level, educational background, and the type of AI use (a specialized assistant at VIU vs. open-access tools at UA). Thus, student perceptions reflect not only individual attitudes but also structural differences in how the AI experience was designed and implemented.

The following table summarizes the average scores obtained by participant subgroups across the seven dimensions assessed. These results provide a synthetic overview of the comparative patterns discussed in the previous sections.

Table 2. Mean Scores by Group and Dimension.

Group	D1	D2	D3	D4	D5	D6	D7
Women	3.16	3.49	3.73	3.82	3.32	2.68	3.81
Men	3.20	3.35	3.60	3.76	3.23	2.60	3.71
Under 20	3.17	3.46	3.70	3.72	3.28	2.66	3.76
20-29	3.20	3.45	3.69	3.81	3.34	2.66	3.77
30-39	2.90	3.42	3.64	3.87	3.23	2.62	3.85
40 or older	3.10	3.62	3.78	4.17	2.97	2.80	4.11
Low digital competence	2.64	3.13	3.43	3.55	3.51	2.60	3.60
Moderate digital competence	3.04	3.39	3.68	3.74	3.29	2.67	3.77
High digital competence	3.40	3.58	3.76	3.91	3.27	2.66	3.82
Very high digital competence	3.71	3.60	3.78	3.94	3.33	2.61	3.92
Education	3.24	3.61	3.85	3.96	3.24	2.82	3.93
Humanities	2.88	3.10	3.41	3.48	3.37	2.40	3.50
Social Sciences	3.44	3.58	3.73	3.84	3.33	2.61	3.85
Science/Engineering	3.28	3.47	3.56	3.74	3.38	2.60	3.70
UA	3.12	3.35	3.60	3.68	3.33	2.60	3.68
VIU	3.27	3.69	3.89	4.07	3.22	2.79	4.01

Note. Scores range from 1 to 5. Higher scores indicate more favorable perceptions.

INTERPRETIVE SYNTHESIS

Taken together, the comparative analyses indicate that perceptions of generative AI are shaped by key variables such as gender, age, digital competence, academic field, and institutional context. The observed differences suggest that there is no one-size-fits-all approach to integrating AI into higher education; rather, effective adoption requires pedagogical design that is context-aware and responsive to students' characteristics as well as to the technological and educational conditions of each setting. This diversity underscores the need for flexible, ethically informed, and methodologically robust approaches to promote meaningful educational uses of these emerging tools.

4. DISCUSSION AND CONCLUSIONS

4.1. Discussion

The findings of this study point to a central tension in students' relationships with generative artificial intelligence (GAI) in educational settings. On the one hand, students demonstrate a generally favorable attitude, especially regarding the usefulness and pedagogical integration of GAI, when it is framed within guided learning experiences. This positive reception aligns with emerging research highlighting the potential of these tools in authentic instructional contexts (Aldossary et al., 2023; Aruleba et al., 2023). On the other hand, this optimism is tempered by significant critical judgment. The low scores assigned to the reliability of GAI-generated content reveal that students' appropriation of these tools is reflective, rather than naïve, demonstrating a degree of critical awareness that aligns with concerns, in the literature about the need to critically verify and evaluate AI outputs (Kamoun, 2023).

Beyond this general trend, the results indicate that perceptions of GAI are not monolithic but significantly mediated by students' backgrounds and characteristics. The more positive evaluations from women and students with higher self-perceived digital competence suggest that digital literacy is more than a technical skill; it shapes learners' confidence and disposition toward integrating new technologies into their learning processes. Similarly, age-based differences were revealing, with older students showing a more favorable attitude and overall evaluation despite lower initial familiarity. This may indicate that greater academic maturity allows for a more strategic and purpose-driven application of GAI tools, moving beyond novelty to practical integration.

Perhaps the most significant finding of this study is the powerful role of disciplinary culture in shaping students' perceptions of GAI. Students in Education and Social Sciences reported a greater affinity for these tools, a response likely linked to the alignment between GAI's current capabilities and the common academic tasks in these fields, such as text synthesis, argumentation, and idea generation. In contrast, students from the Humanities and Science/Engineering expressed more critical views, though their skepticism stemmed from different disciplinary logics. Humanities students' concerns appeared centered on issues of authorship, originality, and semantic nuance, while those in Science and Engineering focused on technical accuracy, precision, and the reliability of factual data. These results strongly suggest that the integration of GAI is not a uniform process, but one that is deeply filtered through the epistemological frameworks, values, and established practices of each academic discipline.

Ultimately, the main contribution of this work lies in its empirical grounding and ecological validity. While much of the literature on GAI in education remains speculative or theoretical, this study offers a robust analysis based on students' real-world interactions with these tools within guided pedagogical contexts across a wide range of disciplines and institutional settings. By using a validated instrument and rigorous comparative analysis, it provides fine-grained evidence of how students are actually perceiving and making sense of GAI. This approach moves the conversation beyond abstract discussions of risks and benefits, offering a context-sensitive foundation for designing effective and ethically sound educational practices in an AI-shaped world.

4.2. Conclusions

This study provides empirical evidence on how university students perceive the educational use of generative artificial intelligence tools when integrated into their courses with clear pedagogical framing and instructor guidance. Rather than assuming abstract benefits or risks, the research sought to

analyze students' real-world experiences across a wide range of disciplines to inform the development of effective educational strategies.

The principal conclusions drawn from the data are as follows:

- University students demonstrate a generally positive attitude toward GAI when it is integrated
 into their coursework, particularly valuing its usefulness for learning. However, this receptiveness is accompanied by a strong sense of critical awareness regarding the reliability and accuracy of AI-generated content.
- Perceptions of GAI are not universal but are significantly mediated by sociodemographic and personal variables. Gender, age, and especially the self-perceived level of digital competence play a crucial role in shaping students' attitudes and overall evaluation of these tools.
- Disciplinary culture emerges as a key determinant of GAI perception. Students in Education and Social Sciences report more favorable views, aligning with the text-based and problem-solving nature of their fields, while students in Humanities and Science/Engineering adopt a more critical stance, rooted in concerns over authorship, nuance, and technical precision.

As with any context-bound research, this study presents limitations that must be acknowledged. The sample, based on voluntary participation, may be subject to self-selection bias. This bias could be linked to higher intrinsic motivation or a pre-existing interest in technology among the participating students, which might have positively influenced their evaluations. Furthermore, institutional differences—such as academic level, modality, or disciplinary profile—could have also influenced the results. Moreover, since the study focuses on a single, time-limited experience, its findings do not allow for long-term inferences. Additionally, the results are based on students' self-perceptions, which, while valuable for capturing subjective attitudes and experiences, may not fully correspond to actual behaviors or competencies. Nonetheless, these limitations do not diminish the value of the study; on the contrary, they highlight avenues for future research and reflect the inherent complexity of the phenomenon under analysis.

Based on these results, we propose moving toward longitudinal studies that can assess the sustained impact of GAI use on dimensions such as critical thinking, self-regulation, or academic production. Future studies could complement self-reported data with observational or performance-based measures to examine whether students' perceived competencies and attitudes toward GAI align with their actual practices and learning outcomes over time. It would also be valuable to develop comparative studies between courses with and without AI integration, and to expand the analysis to other educational levels, degree programs, and institutional contexts—both in-person and online. The findings from such research could provide key evidence for curriculum redesign, helping to tailor curricula to integrate AI not as an isolated tool, but as a cross-cutting competency that is sensitive to the logics and needs of each disciplinary field. The design of specific evaluation tools for ethical and pedagogical uses of AI likewise represents a promising line of inquiry.

In conclusion, this study's findings advocate for a move away from one-size-fits-all approaches to AI in higher education. Instead, they call for the development of pedagogical models that are critical, creative, and contextually responsive. For educational research, the challenge is not merely to observe technological change but to actively guide it, ensuring that the integration of artificial intelligence serves inclusive, ethical, and meaningful educational goals. Fostering a critically informed use of GAI is essential to preparing students for a future where human-AI collaboration will be paramount.

5. REFERENCES

- Aldossary, A. S., Aljindi, A. A., & Alamri, J. M. (2024). The role of generative AI in education: Perceptions of Saudi students. *Contemporary Educational Technology*, *16*(4), 1–18. https://doi.org/10.30935/cedtech/15496
- Aruleba, K., Sanusi, I. T., Obaido, G., & Ogbuokiri, B. (2023). Integrating ChatGPT in a Computer Science Course: Students Perceptions and Suggestions. *ArXiv Preprint*, ArXiv:2402.01640, 1–13. http://arxiv.org/abs/2402.01640
- Barrett, A., & Pack, A. (2023). Not quite eye to A.I.: student and teacher perspectives on the use of generative artificial intelligence in the writing process. *International Journal of Educational Technology in Higher Education*, 20(1–24). https://doi.org/10.1186/s41239-023-00427-0
- Borkovska, I., Kolosova, H., Kozubska, I., & Antonenko, I. (2024). Integration of AI into the Distance Learning Environment: Enhancing Soft Skills. *Arab World English Journal*, 56–72. https://doi.org/10.24093/awej/ChatGPT.3
- Bozkurt, A., Karadeniz, A., Baneres, D., Guerrero-Roldán, A. E., & Rodríguez, M. E. (2021). Artificial intelligence and reflections from educational landscape: A review of AI studies in half a century. *Sustainability*, *13*(2), 1–16. https://doi.org/10.3390/su13020800
- Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., ... Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems. *ArXiv Preprint*, arXiv:2005.14165. https://doi.org/10.48550/arXiv.2005.14165
- Carrasco-Rodríguez, A. (2024). Perceptions of generative artificial intelligence among University Early Modern History students. *Tiempos Modernos. Revista electrónica de Historia Moderna,* 14(49), 269-285. http://hdl.handle.net/10045/151582
- Carrasco-Rodríguez, A, & Albero-Verdú, S. A. (2025). Exploratory study of percetions on generative artificial intelligence in tutorial action within university education. In C. Mateo-Guillen & A. Cortijo Ocaña (coord.), *Transformations in digital learning and educational technologies* (91-114). IGI Global. https://doi.org/10.4018/979-8-3373-3678-7.ch005
- Campbell, M., Hoane, A. J., & Hsu, F. H. (2002). Deep Blue. *Artificial Intelligence*, *134*(1–2), 57–83. https://doi.org/10.1016/S0004-3702(01)00129-1
- Bauroun, Z, Anane, C., Ahmad, V., & Zacca, A. (2023). Transforming Education: A Comprehensive Review of Generative Artificial Intelligence in Educational Settings through Bibliometric and Content Analysis. *Sustainability*, *15*(17), 12983. https://doi.org/10.3390/su151712983
- Chan, C. K. Y., & Hu, W. (2023). Students' voices on generative AI: perceptions, benefits, and challenges in higher education. *International Journal of Educational Technology in Higher Education*, 20(1), 1–18. https://doi.org/10.1186/s41239-023-00411-8
- Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: A narrative overview. *Procedia Computer Science*, *136*, 16–24. https://doi.org/10.1016/j.procs.2018.08.233
- Chen, X., Xie, H., Zou, D., & Hwang, G. J. (2020). Application and theory gaps during the rise of Artificial Intelligence in Education. *Computers and Education: Artificial Intelligence*, *I*(July), 100002. https://doi.org/10.1016/j.caeai.2020.100002

- Duah, J. E., & McGivern, P. (2024). How generative artificial intelligence has blurred notions of authorial identity and academic norms in higher education, necessitating clear university usage policies. *The International Journal of Information and Learning Technology, 41*(2), 180–193. https://doi.org/10.1108/IJILT-11-2023-0213
- Fuchs, K. (2023). Exploring the opportunities and challenges of NLP models in higher education: is Chat GPT a blessing or a curse? *Frontiers in Education*, 8. https://doi.org/10.3389/feduc.2023.1166682
- Elmotri, B., Harizi, R., Boujlida, A., Elyasa, Y. M., Garrouri, S., Amri, F., Malik, F. H., Al-humari, M. A. (2024). The Impact of AI-Generated Feedback Explicitness (Generic vs. Specific) on EFL Students' Use of Automated Written Corrective Feedback. *Arab World English Journal*, *41*(1), 384–402. https://doi.org/10.24093/awej/vol16no1.24
- Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. *California Management Review*, 61(4), 5–14. https://doi.org/10.1177/0008125619864925
- Hinojo-Lucena, F. J., Aznar-Díaz, I., Cáceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. *Education Sciences*, *9*(1). https://doi.org/10.3390/educsci9010051
- Huang, M. H., & Rust, R. T. (2018). Artificial Intelligence in Service. *Journal of Service Research*, *21*(2), 155–172. https://doi.org/10.1177/1094670517752459
- Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. *Business Horizons*, *61*(4), 577–586. https://doi.org/10.1016/j.bush-or.2018.03.007
- Jin, S. H., Im, K., Yoo, M., Roll, I., & Seo, K. (2023). Supporting students' self-regulated learning in online learning using artificial intelligence applications. *International Journal of Educational Technology in Higher Education*, 20(1), 1–21. https://doi.org/10.1186/s41239-023-00406-5
- Kamoun, F., Ayeb, W. El, Jabri, I., Sifi, S., & Iqbal, F. (2024). Exploring Students' and Faculty'S Knowledge, Attitudes, and Perceptions Towards Chatgpt: a Cross-Sectional Empirical Study. *Journal of Information Technology Education: Research*, 23, 1–33. https://doi.org/10.28945/5239
- Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. *Business Horizons*, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004
- Koć-Januchta, M. M., Schönborn, K. J., Roehrig, C., Chaudhri, V. K., Tibell, L. A. E., & Heller, H. C. (2022). "Connecting concepts helps put main ideas together": cognitive load and usability in learning biology with an AI-enriched textbook. *International Journal of Educational Technology in Higher Education*, 19(1), 1–22. https://doi.org/10.1186/s41239-021-00317-3
- Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. *Journal of the Association for Information Science and Technology*, 74(5), 570–581. https://doi.org/10.1002/asi.24750
- Oudeyer, P. Y. (2018). The Lighthill debate on Artificial Intelligence: "The general purpose robot is a mirage." YouTube. https://youtu.be/03p2CADwGF8
- Rahiman, H. U., & Kodikal, R. (2024). Revolutionizing education: Artificial intelligence empowered learning in higher education. *Cogent Education*, 11(1). https://doi.org/10.1080/233118 6X.2023.2293431

- Shi, H., Chai, C. S., Zhou, S., & Aubrey, S. (2025). Comparing the effects of ChatGPT and automated writing evaluation on students' writing and ideal L2 writing self. *Computer Assisted Language Learning*, 1–28. https://doi.org/10.1080/09588221.2025.2454541
- Strzelecki, A., & ElArabawy, S. (2024). Investigation of the moderation effect of gender and study level on the acceptance and use of generative AI by higher education students: Comparative evidence from Poland and Egypt. *British Journal of Educational Technology*, *55*(3), 1209–1230. https://doi.org/10.1111/bjet.13425
- Sullivan, Miriam, Kelly, Andrew, McLaughlan, P. (2023). Considerations for academic integrity and student learning. *Journal of Applied Learning & Teaching*, *6*(1), 31–40. https://doi.org/10.37074/jalt.2023.6.1.17
- Wang, F., King, R. B., Chai, C. S., & Zhou, Y. (2023). University students' intentions to learn artificial intelligence: the roles of supportive environments and expectancy–value beliefs. *International Journal of Educational Technology in Higher Education*, 20(1), 1–21. https://doi.org/10.1186/s41239-023-00417-2

6. CREDIT AUTHOR STATEMENT

Antonio Carrasco-Rodríguez (ACR): Conceptualization; Data curation; Formal Analysis; Funding Acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Writing – Original Draft; Writing – Review & Edition.

Marian Aleson-Carbonell (MAC): Conceptualization; Data curation; Investigation; Supervision; Validation; Writing – Original Draft; Writing – Review & Edition.

5. Visualizar, interpretar y decidir: herramientas profesionales como catalizadoras de competencias analíticas en la formación universitaria¹

Escandell-Poveda, Raquel; Papí-Gálvez, Natalia; Calderón Martínez, Aurora; Santa Soriano, Alba; Ros Selva, Jaume

Universidad de Alicante (España)

RESUMEN

La transformación digital ha revolucionado el ecosistema mediático y la generación y procesamiento de datos, precipitando una creciente demanda de competencias en interpretación de información para la toma de decisiones estratégicas. El presente estudio analiza el valor formativo de herramientas profesionales de análisis y visualización de datos en comunicación y marketing digital, y su aportación al desarrollo de competencias analíticas alineadas con perfiles demandados por el mercado laboral. A través de un enfoque exploratorio y descriptivo, se examinan siete plataformas ampliamente utilizadas en planificación de medios publicitarios y marketing: Tom Micro, Info ío, GfK DAM, ComScore, Google Analytics, Tableau Public y Power BI Desktop. El análisis se basa en documentación técnica y experiencias docentes. Los resultados evidencian la capacidad de estas herramientas para fomentar competencias como la lectura crítica de datos o la visualización interactiva mediante *dashboards*, habilidades clave en perfiles como planificadores de medios, analistas web o especialistas en inteligencia de negocio. La integración de estas herramientas contribuye no solo a la transformación digital de la educación superior sino a la mejora en la alfabetización digital del estudiantado y su preparación ante los desafíos de un mercado laboral en el que cuenta, cada vez más, el dominio de los datos.

PALABRAS CLAVE: herramientas profesionales, competencias digitales, planificación de medios, business intelligence, análisis de datos.

1. INTRODUCCIÓN

La digitalización ha transformado la forma en que los profesionales acceden y gestionan grandes cantidades de datos, incrementando la necesidad de dominar competencias de análisis, interpretación y representación visual de la información (Adewusi et al., 2024). Estas habilidades son cada vez más valoradas en un entorno digitalizado que requiere la toma de decisiones estratégicas (Wood y Sherrington, 2025). Este estudio se inscribe en un proyecto de innovación docente centrado en el uso de herramientas profesionales para el desarrollo de capacidades analíticas en la educación superior y su impacto en la empleabilidad. Mediante un enfoque exploratorio y descriptivo, se examinan distintas herramientas vinculadas a la investigación de medios publicitarios y al *business intelligence*, basándose en la revisión documental y experiencias docentes.

¹ El presente trabajo ha contado con una ayuda del Programa de Redes de investigación en docencia universitaria del Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2023). Ref.: "Innovación docente y comunicación basada en datos: medición, audiencia y medios digitales" (Código 6069)

El análisis de datos es una competencia transversal indispensable en campos como la publicidad, donde la toma constante de decisiones adquiere cada vez mayor relevancia en un entorno tecnológico centrado en los datos. Europa incluye las capacidades analíticas como parte fundamental de las ocho nuevas competencias para el aprendizaje a lo largo de la vida en la sociedad digital, estrechamente vinculadas a la empleabilidad. En concreto, destaca la idea de que, "entre las competencias clave se integran capacidades como el pensamiento crítico, la resolución de problemas, el trabajo en equipo, las capacidades de comunicación y negociación, las capacidades analíticas, la creatividad y las capacidades interculturales" (Consejo de la Unión Europea, 2018, p. 7). Su aplicación al ámbito laboral tiene una trayectoria mayor. En particular, esta capacidad de carácter cognitivo o mental fue incluida en los modelos de desempeño de orden superior de Spencer y Spencer (1993), quienes la definieron como aquella competencia orientada al "procesamiento de datos y conocimiento, determinación de causas-efectos, organización de datos y planes" (p. 11). Actualmente, el informe Future of Jobs (WEF, 2025), también sitúa el "pensamiento analítico y la innovación" entre las 10 primeras habilidades más importantes para los empleos que serán solicitados en 2030. Consideran que se trata de una competencia imprescindible para comprender un mundo cada vez más complejo e interconectado. En su desarrollo, interviene especialmente la educación y la formación en todos los niveles, aunque toma especial relevancia en el nivel superior, como se evidencia en los marcos internacionales.

Paralelamente, en la era tecnológica, la evolución en el consumo de medios ha impactado directamente en las estrategias de marketing situando a internet como líder en inversión publicitaria (IAB Spain, 2025). Este ecosistema mediático requiere profesionales capacitados en manejo de grandes volúmenes de datos, análisis digital e inteligencia artificial (Grewal et al., 2025). Herramientas como Power BI destacan por facilitar la toma de decisiones basadas en datos mediante visualizaciones (López-Robledo, 2023; Segovia-García y Segovia-García, 2024), incluso con mayor eficacia que Excel en el ámbito académico (Mejía-Peñafiel, 2022).

En la enseñanza de publicidad, la planificación de medios se considera una de las más complejas al combinar un componente matemático técnico y otro personal que exige creatividad, intuición y saber hacer profesional (Martín-García et al., 2020). Para dominar este desafío, el uso de programas específicos como Tom Micro o ComScore es valorado muy positivamente por el estudiantado, que lo considera un acercamiento al entorno profesional (Ávila-Rodríguez-de-Mier y Martín-García, 2023; Papí-Gálvez et al., 2025; Papí-Gálvez y Santa-Soriano, 2022). Por otro lado, sobre herramientas digitales en entornos académicos, Okafor (2023) subraya la necesidad de que las universidades, especialmente departamentos de medios y comunicación, faciliten su acceso para analizar datos digitales de forma eficaz empleando diferentes plataformas que aseguren fiabilidad y reduzcan sesgos.

El propósito de este estudio es analizar el potencial educativo de herramientas profesionales de análisis de datos y visualización en la formación universitaria en planificación de medios publicitarios y marketing, valorando su contribución al desarrollo de competencias analíticas clave y su alineación con perfiles profesionales demandados en el entorno laboral. Para ello, se plantean los siguientes objetivos específicos:

- Describir las funcionalidades y condiciones de acceso de herramientas profesionales relevantes en planificación de medios, medición de audiencias, analítica web y *business intelligence*.
- Identificar las competencias que estas herramientas permiten desarrollar, así como los perfiles profesionales vinculados.
- Evaluar su aplicabilidad educativa y grado de alineación con las demandas del entorno laboral.

2. MÉTODO

2.1. Descripción del contexto y de los participantes

Este trabajo se desarrolla en el marco de un proyecto de innovación docente en educación superior, centrado en examinar el impacto de herramientas profesionales. Los participantes implicados en el análisis fueron miembros del equipo docente con experiencia en el uso de las plataformas de análisis de datos aplicadas a la enseñanza.

2.2. Instrumentos

Como principal instrumento metodológico se empleó una ficha de análisis de elaboración propia, concebida para sistematizar la evaluación de herramientas profesionales desde una perspectiva técnica, educativa y profesional. La ficha se estructura en cinco bloques: datos generales, funcionalidades, aplicabilidad educativa, relevancia profesional y reflexión final. Para su elaboración se consultaron fuentes de documentación técnica y prácticas educativas reales. Esta herramienta permite valorar de manera homogénea aspectos como el tipo de métricas que ofrece cada plataforma, su accesibilidad para usos docentes, las competencias que puede desarrollar en el alumnado y su nivel de uso en el sector profesional (Tabla 1).

Tabla 1. Ficha de análisis sintetizada para herramientas profesionales.

1. Datos Generales	Nombre de la herramienta
	Tipo
	Proveedor / Entidad desarrolladora
	Web oficial
	Accesibilidad para fines educativos
	Requisitos técnicos
	Versión analizada
2. Funcionalidades principales	Datos o métricas que proporciona y tipo
	Fuente/s de los datos y método de recogida
	Cobertura
	Nivel de actualización
	Tipo de visualización de datos
	Capacidades analíticas
	Interactividad
	Exportación de resultados
3. Aplicabilidad educativ	Asignaturas o módulos donde puede aplicarse
-	Fortalezas pedagógicas: competencias que puede
	desarrollar
	Tipo de actividades posibles
	Limitaciones educativas
4. Relevancia profesional	Nivel de uso en el sector
•	Sectores/industrias en las que se usa
	Certificaciones oficiales que otorga
	Alternativas a la herramienta
5. Valoración/Reflexión final	Potencial para la empleabilidad
	Pertinencia para el currículum universitario
	Integración con otras herramientas/plataforma

Fuente: elaboración propia.

2.3. Procedimiento

Se aplicó un enfoque descriptivo y comparativo a siete herramientas seleccionadas por su relevancia en la industria y uso potencial en el contexto universitario. Las herramientas analizadas fueron: Tom Micro e Info ío (planificación e investigación de medios), GfK DAM y ComScore (medición de audiencias digitales), Google Analytics (analítica web) y Tableau Public y Power BI Desktop (*business intelligence*). La ficha se completó de forma individual a cada plataforma, identificando sus características, fortalezas y limitaciones, así como su grado de adecuación para el desarrollo de competencias analíticas con fines formativos y de empleabilidad.

3. RESULTADOS

3.1. Herramientas de investigación y planificación de medios: Tom Micro e Info ío

Tom Micro es una herramienta desarrollada por ODEC para la gestión de audiencias y la planificación de medios. Utiliza los datos procedentes del Estudio General de Medios (EGM), la investigación de referencia en España que mide los hábitos de consumo de medios de la población, elaborada por la Asociación para la Investigación de Medios de Comunicación (AIMC). Su acceso para fines educativos está condicionado a licencias de pago, formalizadas mediante convenios con universidades, y no cuenta con una versión gratuita o de prueba. Precisa instalación local y puede presentar incompatibilidades con sistemas operativos distintos a Windows.

En cuanto a sus funcionalidades principales, Tom Micro permite analizar datos cuantitativos a través de tablas e informes. Sus capacidades analíticas son descriptivas y comparativas. Con ella se puede segmentar audiencias, optimizar y evaluar planes de medios y realizar análisis económicos ajustados a la planificación de campañas publicitarias. Ofrece filtros para personalizar búsquedas e informes y permite exportar los resultados en formatos como texto o Excel. La actualización de los datos se realiza de forma periódica, sincronizándose con las tres oleadas anuales del EGM.

Su aplicación en el ámbito educativo depende del módulo contratado, fundamentalmente se puede utilizar en asignaturas relacionadas con la investigación de audiencias y planificación de medios. Facilita el desarrollo de competencias vinculadas a la interpretación de datos y la toma de decisiones en escenarios simulados o basados en información real. Con ella se pueden realizar análisis por tipo de medio, planificación de medios basada en datos reales de audiencias, comparativas entre datos, creación de propuestas estratégicas basadas en análisis de datos o estudios de evolución de la audiencia. Entre sus limitaciones para su uso educativo destacan la ausencia de recursos docentes específicos, la complejidad del programa, que requiere una curva de aprendizaje media y la necesidad de una licencia de pago.

En el entorno profesional, su uso está bien asentado, especialmente en medios de comunicación y agencias de medios publicitarios, al contar con el respaldo de la AIMC, aunque no ofrece certificaciones propias.

Por otro lado, Info ío es una herramienta desarrollada por InfoAdex para la consulta de la inversión publicitaria en España. Se accede mediante licencia de pago y, aunque no dispone de una versión específica para entornos educativos, es posible solicitar el acceso mediante convenio. Requiere instalación local y conexión a internet y, junto con la versión de escritorio, se ofrece una API para su integración con terceros, si bien se emplea principalmente en contextos profesionales.

Ofrece datos de inversión (nacional y autonómica), inserciones y ocupación publicitaria clasificada por sectores, productos, anunciantes, agencias, marcas, medios, soportes, formato, tamaño, posición,

programa y hasta veinte variables descriptoras por medio. La actualización es diaria, los datos pueden visualizarse en forma de *dashboards* o informes personalizados y permite exportar en formato Excel, CSV, PDF o imagen. Las capacidades analíticas incluyen análisis descriptivo, comparativo, correlaciones entre variables y detección de patrones.

En el ámbito educativo, puede emplearse en asignaturas como investigación de audiencias, planificación de medios y marketing. Entre las competencias que permite trabajar se encuentran la visualización de datos, el análisis de tendencias en medios y la lectura crítica de *dashboards*. También entrena la toma de decisiones basadas en datos reales. Con ella se pueden realizar análisis comparativos y temporales de los principales parámetros de la actividad publicitaria como los soportes utilizados, el número de inserciones y la ocupación segmentada por sectores, productos o marcas.

Entre sus limitaciones desde el punto de vista educativo, destacan el acceso restringido a los datos más recientes, una curva de aprendizaje media-alta en las fases iniciales y la necesidad de acompañamiento docente para su correcta integración en el aula. Adicionalmente, la herramienta no da acceso a conocer toda la inversión publicitaria realizada por las marcas en entornos digitales.

Su nivel de uso profesional se sitúa entre medio y alto, especialmente en agencias de medios y consultoras, aunque también puede emplearse de forma indirecta en departamentos de marketing y agencias de publicidad.

3.2. Herramientas de medición de audiencias digitales: GfK DAM y ComScore

GfK DAM es una herramienta de medición de audiencias digitales desarrollada por GfK, el medidor oficial en España desde 2022 y vigente en 2025, con cobertura en el mercado nacional. Su acceso es mediante web, no requiere instalación local por lo que no presenta incompatibilidades con sistemas operativos. Debido a que no ofrece pruebas gratuitas ni versiones educativas, en el ámbito universitario puede utilizarse mediante licencias de pago sujetas a convenio.

Proporciona datos cuantitativos obtenidos a partir de fuentes censales y panel de usuarios, con una frecuencia periódica de actualización mínima mensual. Permite visualizar la información mediante tablas, gráficos, mapas, *dashboards* e informes, tanto automáticos como personalizados. Sus capacidades analíticas incluyen el análisis descriptivo, comparativo y la segmentación de audiencias. La herramienta permite filtros, búsquedas, funciones de *drill-down* (para explorar datos de niveles más específicos a partir de una visualización) y personalización de informes. Los resultados pueden exportarse en distintos formatos, entre los que destaca Excel.

GfK puede emplearse en asignaturas como investigación de audiencias, planificación de medios, marketing digital o analítica web y de redes sociales. Contribuye al desarrollo de competencias como la interpretación de métricas y KPIs (Indicadores Clave de Rendimiento), el análisis de tendencias de consumo, la toma de decisiones en entornos simulados o reales, la alfabetización en herramientas de visualización e informes interactivos así como las competencias en la presentación visual de datos (data storytelling).

Las actividades posibles en el aula incluyen estudios de caso por tipo de medios o sectores, evaluaciones comparativas de tráfico entre sitios web o estudios de evolución de audiencias digitales en medios. Adicionalmente, permite realizar proyectos interdisciplinares a través de propuestas estratégicas basadas en análisis de datos.

Aunque la herramienta no cuenta con recursos docentes específicos y presenta un modelo de acceso limitado por licencia, su curva de aprendizaje es baja. Su uso en el sector es alto, especialmente en medios de comunicación, y está respaldado por AIMC-IAB.

Por su parte, ComScore es la herramienta alternativa de medición crossmedia orientada a medios digitales, accesible mediante plataforma web y desarrollada por la empresa homónima. Al igual que GfK, utiliza un sistema híbrido de recogida de datos basado en fuentes censales y paneles de usuarios, incluyendo un *Single-Source Panel*, que permite analizar el comportamiento digital completo de cada usuario desde una única fuente.

Su cobertura es internacional, aunque dispone de soluciones adaptadas al mercado nacional. La frecuencia de actualización es, como mínimo, mensual, y permite visualizar la información mediante *dashboards* o informes personalizados. Entre las capacidades analíticas adicionales a GfK, destacan sus métricas relacionadas con medios sociales. También integra filtros, opción de búsquedas y personalización de informes además de permitir la exportación de resultados en formato Excel. No hay versión educativa aunque es posible acceder a una demo limitada y las licencias son de pago, previo convenio.

ComScore puede aplicarse a asignaturas vinculadas a audiencias digitales, medios sociales y planificación, dependiendo del módulo contratado. Permite el desarrollo de competencias como la búsqueda e interpretación de datos, el análisis de comportamiento digital, la toma de decisiones informadas en entornos simulados o reales y la alfabetización en herramientas de visualización. Entre las actividades didácticas posibles se incluyen el análisis por medios, las comparativas de sitios web o redes sociales o el estudio de evolución de la audiencia digital en medios, siempre que se disponga de diferentes meses de datos, aunque suelen ser limitados. Las principales limitaciones radican en la necesidad de adquirir una licencia de pago, la falta de recursos didácticos específicos y una curva de aprendizaje media. Su uso en el sector se considera medio, al ser GfK el medidor oficial en España en el periodo analizado.

3.3. Herramientas de analítica web: Google Analytics

Google Analytics es la plataforma de analítica web desarrollada por Google. En la realización de este estudio se encuentra vigente su versión 4 (GA4). Se trata de una herramienta gratuita a la que se accede a través de navegador, y puede utilizarse mediante una cuenta de Google en cualquier web, previa instalación de su código de seguimiento. GA4 dispone de un entorno de demostración con datos de un comercio electrónico y aplicación móvil, lo que facilita su uso en prácticas docentes sin necesidad de acceso a datos propios.

Permite recopilar datos en tiempo real sobre el tráfico, los usuarios y su comportamiento en sitios web o aplicaciones. Entre las métricas clave se encuentran sesiones (visitas a una web), usuarios, duración media de la visita, páginas por sesión o eventos personalizados. Entre otras funciones, permite segmentar audiencias según el canal de adquisición, ubicación geográfica o tipo de dispositivo. Asimismo, incorpora herramientas para visualizar embudos de conversión, flujos de comportamiento y medición de objetivos como clics, formularios enviados o compras. Los informes pueden exportarse en PDF, CSV o integrarse directamente con otras plataformas de la compañía como Google Ads (gestión de campañas publicitarias), Tag Manager (gestión de etiquetas sin necesidad de programación) o Looker Studio (visualización de datos mediante *dashboards* interactivos).

En el entorno académico, Google Analytics se puede emplear en asignaturas relacionadas con la analítica web, SEO y SEM (posicionamiento y marketing de buscadores), marketing digital o inves-

tigación en el ámbito de la comunicación online. Ayuda a desarrollar competencias como la interpretación de KPIs o el análisis del tráfico. Asimismo contribuye a potenciar habilidades como la toma de decisiones informadas o la alfabetización en herramientas de visualización. En el aula se pueden desarrollar actividades como auditorías y análisis de tráfico de sitios web así como el diseño de *das-hboards* personalizados con métricas clave o elaboración de informes comparativos o identificación de patrones de comportamiento del usuario.

Sus limitaciones educativas incluyen una curva de aprendizaje moderada y la necesidad de configuración técnica adecuada. La demo no tiene estos problemas pero ofrece un uso limitado.

Al ser la herramienta de referencia en analítica web gratuita del mercado, su relevancia profesional es muy alta y su conocimiento es muy valorado en perfiles como analista digital, gestor de campañas, responsable de comercio electrónico o especialista en estrategia SEO/SEM. Dispone de múltiples recursos gratuitos para formación y la certificación oficial gratuita que se obtiene a través del curso "Google Analytics Certification".

3.4. Herramientas de business intelligence: Tableau Public y Power BI

Tableau Public es la versión gratuita de la herramienta de *business intelligence* desarrollada por Tableau, perteneciente a Salesforce. Está orientada a la visualización de datos y funciona tanto en sistemas operativos Windows como Mac. La versión analizada, 2025.1, permite diseñar *dashboards* localmente pero exige su publicación en la web, lo que la convierte en una solución orientada a proyectos abiertos o educativos sin requerimientos de confidencialidad.

Además de la versión gratuita, dispone de un programa académico: Tableau para la enseñanza, que proporciona licencias individuales, grupales o institucionales para docentes y estudiantes universitarios.

Es compatible con una gran variedad de fuentes de datos y ofrece una amplia gama de gráficos como mapas de calor, de barras, circulares, de dispersión, de líneas o histogramas. Los aspectos más relevantes en el ámbito de la capacidad analítica residen en permitir calcular estadísticos descriptivos para cada tabla numérica de la fuente de datos, así como crear campos calculados.

La alternativa para *business intelligence* es Power BI Desktop, la versión gratuita de esta herramienta de Microsoft, que se instala en local (solo para sistemas operativos Windows) y permite crear informes completos e interactivos a partir del diseño de visualizaciones. Dispone también de versiones profesionales, aunque su versión gratuita ya permite desarrollar tareas avanzadas de análisis y visualización de datos. Sus funcionalidades principales son las de cargar, preparar y transformar datos, crear visualizaciones a partir de ellos y publicarlas. Adicionalmente, incorpora Copilot como asistente de inteligencia artificial en licencias premium. Permite conectarse a múltiples fuentes de datos, incluyendo archivos locales, como Excel o texto, bases de datos, servicios en la nube y plataformas como Google Analytics o Salesforce.

Una de las capacidades analíticas más destacadas de Power BI Desktop es la transformación de datos mediante Power Query, que permite conectar, preparar y modificar la información, además de crear medidas personalizadas integrables como nuevos campos en la base de datos. Para añadir interactividad a las visualizaciones incorpora dos recursos: la segmentación, que permite actualizar los gráficos simplemente arrastrando un campo; y el panel de filtros, que ofrece opciones básicas, avanzadas o por rango para aplicar condiciones a los datos representados. Las visualizaciones

creadas con la versión gratuita pueden publicarse localmente o en la nube, siendo visible solo por la persona autora.

Dispone de actualizaciones periódicas y Microsoft ofrece numerosos recursos didácticos, cursos oficiales y la certificación profesional "Asociado Analista de Datos de Power BI", reconocida internacionalmente.

Tanto Tableau como Power BI, al tratarse de herramientas dedicadas a la exploración, análisis y visualización de datos, pueden aplicarse en todas aquellas asignaturas en las que se disponga de datos fundamentalmente de carácter cuantitativo. Por tanto, estas herramientas tienen total cabida en materias relacionadas con métricas de marketing, comunicación estratégica basada en datos y visualización y storytelling de datos. Además, pueden aplicarse en aspectos puntuales de materias como marketing digital, investigación de audiencias, analítica web y de redes sociales y planificación y compra de medios.

Ambas permiten al estudiantado desarrollar competencias como la alfabetización en herramientas de visualización e informes interactivos, la capacidad para presentar información de forma clara y estructurada a través del data storytelling, la interpretación de métricas e indicadores clave de rendimiento (KPIs), y fortalecen la toma de decisiones informadas en contextos simulados o reales.

Según datos de la empresa tecnológica 6sense (2025), Power BI y Tableau son las herramientas de visualización de datos más utilizadas en el mundo, con más de 56.000 y 51.000 clientes, el 13 y 12 % de cuota de mercado respectivamente.

3.5. Competencias y perfiles profesionales asociados a las herramientas

A partir del análisis de las herramientas se ha realizado una catalogación de competencias vinculadas a perfiles profesionales del ámbito digital como los incluidos en el Libro Blanco para el diseño de las titulaciones universitarias en el marco de la Economía Digital (Ministerio de Industria, Energía y Turismo, 2015).

Tom Micro e Info ío destacan en planificación y estrategia de medios. Mientras que Tom Micro favorece el análisis de audiencias y la segmentación, Info ío se orienta al benchmarking publicitario y la evaluación de la inversión. Ambas permiten simular escenarios reales, lo que resulta especialmente útil para perfiles como planificadores de medios y analistas publicitarios.

En medición digital, GfK DAM y ComScore proporcionan competencias vinculadas a la interpretación de KPIs y comportamiento online vinculadas a perfiles analistas de medios digitales y especialistas en planificación.

Google Analytics, por su parte, más enfocada en marketing digital, aporta competencias de analítica web, seguimiento de usuarios, evaluación de contenidos y optimización de la experiencia digital (UX). Está relacionada con perfiles como analistas web o especialistas en SEO/SEM.

Por último, Tableau Public y Power BI refuerzan competencias en data storytelling, interpretación de métricas y toma de decisiones basadas en datos, relevantes para perfiles como analistas de negocio y especialistas en visualización (Tabla 2).

Tabla 2. Competencias y perfiles profesionales asociados a las herramientas.

	Fortalezas pedagógicas. Competencias.	Perfil profesional.		
Tom Micro	Análisis de audiencias, segmentación, planificación estratégica de medios. Interpretación de datos y toma de decisiones.	Planificador/a de medios. Analista de medios.		
Info ío	Benchmarking publicitario, análisis sectorial, estrategia de inversión. Visualización y lectura crítica de datos.	Responsable de cuentas. Planificador/a de medios. Analista de mercado.		
GfK DAM	Medición digital. Interpretación de KPIs de comportamiento online.	Analista de medios digitales. Planificador/a de medios		
ComScore	Evaluación de audiencias, análisis competitivo digital. Alfabetización en herramientas de visualización. Toma de decisiones basadas en datos.	Analista de datos de marketing.		
Google Analytics	Analítica web, seguimiento de usuarios, optimización de contenidos y UX. Interpretación de KPI. Toma de decisiones con datos. Alfabetización en herramientas de visualización.	Especialista en marketing digital. SEO/ SEM, Analista web.		
Tableau Public	Presentación visual de datos (Data Storytelling).	Analista de negocio, Especialista en		
Power BI	Alfabetización en herramientas de visualización. Interpretación de métricas y KPIs. Toma de decisiones informadas.	visualización de datos. Especialista en inteligencia de negocio.		

Fuente: elaboración propia.

4. DISCUSIÓN Y CONCLUSIONES

El análisis de las siete herramientas profesionales aplicadas en la formación universitaria ha permitido valorar su utilidad técnica y pedagógica, alineada con las competencias y perfiles profesionales que demanda el mercado laboral.

Cada una de ellas contribuye a la formación en ámbitos clave como la planificación de medios, el análisis de inversión, la medición de audiencias, la analítica web y la visualización de datos. La revisión sistematiza sus funcionalidades, condiciones de uso y posibilidades de integración en el aula, confirmando la necesidad de incorporar herramientas que conecten el aprendizaje con prácticas reales, mencionada por Adewusi et al. (2024).

A la luz de los análisis, se concluye que su uso en la educación superior favorece el desarrollo de competencias analíticas de alto valor: no solo su manejo técnico, sino interpretación de datos, análisis comparativo, visualización de información con perspectiva crítica y la toma de decisiones con una base empírica. Estas competencias coinciden con las señaladas por Wood y Sherrington (2025), para perfiles digitales, abarcando desde investigadores y planificadores de medios o analistas web hasta especialistas en inteligencia de negocio.

Aunque presentan limitaciones como licencias de acceso, curva de aprendizaje o necesidad de acompañamiento docente, todas aportan elementos aplicables a la formación universitaria. Su integración curricular destaca por permitir proyectos aplicados, gracias a la aportación de datos reales, y la posibilidad de personalización de los análisis.

Este análisis contribuye a la transformación digital de la educación superior proponiendo un marco para integrar estas herramientas en los programas formativos. En definitiva, plantea un enfoque prác-

tico que fortalece la capacidad del estudiantado para recopilar, analizar e interpretar datos masivos, competencias clave en ámbitos como la publicidad, el marketing, el análisis de mercados y la comunicación digital. En un contexto cada vez más condicionado por la presencia de inteligencia artificial y la automatización, formar en el uso consciente, ético y estratégico de los datos no solo cubre una necesidad educativa, sino que mejora las perspectivas de empleabilidad en un mercado donde el dominio de estas habilidades se ha vuelto imprescindible.

5. REFERENCIAS

- 6sense. (2025). *Tableau software market share and competitor analysis*. https://6sense.com/tech/data-visualization/tableau-software-market-share
- Adewusi, A. O., Okoli, U. I., Adaga, E., Olorunsogo, T., Asuzu, O. F., & Daraojimba, D. O. (2024). Business intelligence in the era of big data: A review of analytical tools and competitive advantage. *Computer Science & IT Research Journal*, *5*(2), 415-431. https://doi.org/10.51594/csitrj.v5i2.791
- Ávila Rodríguez de Mier, B., y Martín García, N. (2023). Análisis de la implantación de un software profesional en la docencia universitaria. *Aula de Encuentro*, *25*(2), 157-174. https://doi.org/10.17561/ae.v25n2.8064
- Consejo de la Unión Europea. (2018, 4 de junio). *Recomendación del Consejo de 22 de mayo de 2018 sobre las competencias clave para el aprendizaje permanente* (2018/C 189/01). Diario Oficial de la Unión Europea, C 189, 1–13. https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32018H0604(01)
- Grewal, D., Guha, A., Beccacece Satornino, C., y Becker, M. (2025). The future of marketing and marketing education. *Journal of Marketing Education*, 47(1), 61-77. https://doi.org/10.1177/02734753241269838
- IAB Spain. (2025). Estudio de inversión publicitaria en medios digitales 2025. https://iabspain.es/estudio/estudio-de-inversion-publicitaria-en-medios-digitales-2025/
- López-Robledo, D. M. (2023). Power BI para la visualización de datos en instituciones educativas. HETS Online Journal, 13(2), 6-22. https://doi.org/10.55420/2693.9193.v13.n2.118
- Martín-García, N., De Frutos Torres, B., Pacheco Barrio, M., y Ávila Rodríguez-de-Mier, B. (2020). Evaluación de una intervención docente para la planificación de medios con el programa Excel. En R. Roig-Vila (Ed.), *La docencia en la enseñanza superior. Nuevas aportaciones desde la investigación e innovación educativas* (pp. 707-718). Octaedro.
- Mejía Peñafiel, E. F. (2022). R como herramienta de análisis y visualización de datos usando Inteligencia de Negocios y PowerBI. *AlfaPublicaciones*, *4*(3), 186-208. https://doi.org/10.33262/ap.v4i3.246
- Ministerio de Industria, Energía y Turismo. (2015). *Libro blanco de titulaciones del sector de la eco-nomía digital*. Cyan, Proyectos y Producciones Editoriales, S. A. https://www.ccii.es/images/ccii/recursos/Libro-Blanco.pdf
- Okafor, O. (2023). Assessing the perception of media and communication researchers in UNILAG on web analytics as an audience research method. *Journal of Advanced Research in Social Sciences*, 6(3), 94–107. https://doi.org/10.33422/jarss.v6i3.1072
- Papí-Gálvez, N. y Santa-Soriano, A. (2022). Educación superior y competencias digitales en publicidad: un caso de aprendizaje de conceptos avanzados con tecnología profesional. En I. Rodrigo-Martín et al. (Eds.). *La nueva era comunicativa* (pp. 391-404). Thomson Reuters Aranzadi.

- Papí-Gálvez, N., Santa-Soriano, A., Ros-Selva, J., Escandell-Poveda, R. y Calderón-Martínez, A. (2025). Integración de tecnologías profesionales en la enseñanza universitaria: un estudio piloto en comunicación digital. En I. Rodrigo-Martín et al. (Eds.). *Comunicación digital y sociedad: impactos, narrativas y transformaciones en la era conectada* (pp. 369-380). ESIC Editorial.
- Segovia García, L., y Segovia-García, N. (2024). Estrategia de análisis de datos en entornos digitales: evaluación de la actividad docente. *European Public & Social Innovation Review*, *10*, 1–20. https://doi.org/10.31637/epsir-2025-369
- Spencer, L., y Spencer, S. (1993). Competence at work. Models for superior performance. Wiley.
- Wood, R. y Sherrington, S. (2025). State of Digital Communication 2025. Connect Europe. https://www.connecteurope.org
- World Economic Forum. (2025). *Future of jobs report 2025*. https://reports.weforum.org/docs/WEF_Future_of_Jobs_Report_2025.pdf

6. Implementación del aprendizaje basado en proyectos en la formación de nutrición humana y dietética: creación de una empresa de base tecnológica

Escandell Rico, Francisco Miguel; Pérez Fernández, Lucía

Facultad de Ciencias de la salud, Departamento de enfermería, Universidad de Alicante

RESUMEN

La educación superior enfrenta el reto de formar profesionales con habilidades prácticas y transversales que les permitan adaptarse a entornos cambiantes, especialmente en el contexto digital. En respuesta, se implementan metodologías activas como el Aprendizaje Basado en Provectos (ABP), que integran teoría y práctica. Este estudio tuvo como objetivo analizar el impacto de la implementación del ABP en el desarrollo de competencias transversales del alumnado, específicamente en su voluntad de trabajo, satisfacción con la metodología y rendimiento académico, mediante el diseño colaborativo de una Empresa de Base Tecnológica (EBT) en la asignatura "gestión de la calidad" del grado en nutrición humana y dietética. Se realizó un estudio descriptivo transversal con estudiantes del grado en Nutrición, quienes, organizados en grupos, desarrollaron una EBT ficticia aplicando conocimientos teórico-prácticos, con entregas periódicas. Para evaluar la estrategia docente, se midieron la voluntad de trabajo y la satisfacción mediante cuestionarios validados. Participaron 80 estudiantes, quienes mostraron una voluntad de trabajo moderada y una alta satisfacción con la metodología, destacando la utilidad del ABP para su formación; un 85% expresó preferencia por este enfoque frente a métodos tradicionales. Se encontró que mayores dificultades al generar la idea del proyecto se asociaron con mejores calificaciones, mientras que la satisfacción no influyó directamente en el rendimiento académico. En conclusión, el uso del ABP en la asignatura de "gestión de la calidad" resultó eficaz para fortalecer competencias, vincular teoría y práctica, y promover una experiencia de aprendizaje positiva en ciencias de la salud.

PALABRAS CLAVE: Aprendizaje basado en proyectos, empresas de base tecnológica, gestión de la calidad, nutrición humana, competencias transversales.

1. INTRODUCCIÓN

En la educación superior contemporánea, uno de los principales desafíos consiste en garantizar que el estudiantado no solo adquiera conocimientos teóricos, sino también competencias prácticas y profesionales que faciliten su inserción en el mercado laboral y su adaptación a contextos dinámicos y complejos. Esta necesidad se vuelve aún más urgente en el marco de la sociedad del conocimiento y la transformación digital, donde se requieren habilidades como la resolución de problemas, la capacidad de adaptación, el pensamiento crítico, el trabajo colaborativo y la iniciativa emprendedora (Prince, 2004; Freeman et al., 2014).

Como respuesta a estas demandas, la innovación docente ha centrado su atención en metodologías activas de aprendizaje, entre las que destaca el Aprendizaje Basado en Proyectos (ABP), que promueve un rol activo del estudiante en su proceso formativo (Roel et al., 2013; Dolmans et al., 2005). Estas metodologías se basan en el abordaje y resolución de situaciones reales o simuladas, facilitando una integración significativa entre teoría y práctica, lo que potencia la motivación, la autonomía y el desarrollo de competencias transversales (Strobel & van Barneveld, 2009).

En particular, el ABP ha demostrado ser eficaz en contextos educativos orientados a conectar la formación académica con la realidad profesional. A través del desarrollo de un proyecto concreto y estructurado, el estudiantado tiene la oportunidad de experimentar los desafíos y dinámicas propias de su futuro ámbito laboral, favoreciendo una comprensión más profunda de los contenidos curriculares y el desarrollo de habilidades organizativas, comunicativas y de gestión (Thomas, 2000; Kokotsaki et al., 2016).

En el campo de la nutrición humana y dietética, la incorporación de estas metodologías cobra una relevancia particular. La formación en ciencias de la salud exige una preparación integral que combine conocimientos técnicos con habilidades prácticas, especialmente en áreas como la gestión de servicios alimentarios, la seguridad alimentaria y la calidad nutricional (Gracia-Arnaiz, 2018). A ello se suma la creciente transformación tecnológica del sector alimentario, impulsada por la digitalización y la incorporación de nuevas herramientas para el análisis, producción y distribución de alimentos (Ruiz-López et al., 2020).

Ante este panorama, las Empresas de Base Tecnológica (EBT) se presentan como un modelo de referencia para abordar de manera simultánea dimensiones científicas, tecnológicas, organizativas e innovadoras. Las EBT se caracterizan por el uso intensivo del conocimiento técnico y por su capacidad para generar productos y servicios innovadores en sectores estratégicos como el alimentario, donde la calidad, la seguridad y la sostenibilidad son aspectos prioritarios (OECD, 2023). La simulación del diseño y gestión de una EBT en contextos académicos representa, por tanto, una oportunidad valiosa para que el estudiantado aplique sus conocimientos en un entorno integrador, contextualizado y realista.

En este sentido, la presente propuesta se enmarca en una innovación docente aplicada a la asignatura "gestión de la calidad" del tercer curso del grado en nutrición humana y dietética. Se propone el desarrollo de un proyecto basado en la creación y gestión de una EBT ficticia vinculada al sector alimentario, con una organización interna estructurada según modelos de gestión de calidad. Esta estrategia busca reforzar la conexión entre teoría y práctica, fomentar el espíritu emprendedor y facilitar la adquisición de competencias clave en un entorno interdisciplinario, coherente con las exigencias del ejercicio profesional actual.

2. MÉTODO

Se realizó un estudio transversal descriptivo con el objetivo de analizar el impacto de la implementación del ABP en el desarrollo de competencias transversales del alumnado, específicamente en su voluntad de trabajo, satisfacción con la metodología y rendimiento académico, mediante el diseño colaborativo de una EBT en la asignatura "gestión de la calidad" del grado en nutrición humana y dietética.

2.1. Descripción del contexto y de los participantes

La población del estudio estuvo conformada por estudiantes de tercer curso del grado en nutrición humana y dietética de la universidad a estudio, matriculados en la asignatura "gestión de la calidad" (código: 27517), durante el segundo semestre del curso académico 2024–2025.

Se incluyeron todos los estudiantes matriculados en dicha asignatura que participaron activamente en la propuesta. Se excluyeron aquellos que no estaban matriculados, así como quienes no completaron correctamente el cuestionario final.

Se analizó una muestra compuesta por 80 estudiantes universitarios, con una edad media de 22.46 años (DE = 2.66). La calificación media del expediente académico fue de 6.67 (DE = 0.68).

2.2. Instrumentos

Se recogieron variables sociodemográficas como la edad, el sexo y la nota media del expediente académico. Para evaluar el impacto pedagógico de la intervención, se utilizaron los siguientes instrumentos:

- Cuestionario de voluntad de trabajo (Andrés et al., 2013): compuesto por 16 ítems con escala Likert de 7 puntos (1 = nunca; 7 = siempre), con un alfa de Cronbach de 0,86. Este cuestionario midió aspectos relacionados con la disposición al esfuerzo, la automotivación y la responsabilidad en el contexto académico.
- Encuesta de satisfacción con la metodología ABP (Rodríguez-Sandoval & Cortés-Rodríguez, 2010): consistió en 9 ítems con respuestas dicotómicas (Sí/No), que permitieron valorar la utilidad percibida del proyecto, la adquisición de habilidades prácticas y la satisfacción general del alumnado con la metodología aplicada.

2.3. Procedimiento

Durante el transcurso de la asignatura (27 de enero y el 22 de mayo de 2025), se introdujo al alumnado en la metodología ABP, explicando sus fundamentos y diferencias con otras estrategias pedagógicas. Los estudiantes, organizados en grupos de tres a cuatro integrantes, desarrollaron un proyecto consistente en el diseño de una EBT ficticia, orientada al sector alimentario y basada en modelos de gestión de calidad.

A cada grupo se le asignó un alimento como eje central del proyecto. A lo largo del semestre, aplicaron los contenidos teóricos a su proyecto de forma simultánea, presentando avances semanales. Se les proporcionó apoyo mediante manuales de software específicos y vídeos con ejemplos resueltos. El proyecto concluyó con una presentación oral en la que cada grupo explicó y justificó su diseño.

2.4. Análisis de datos

Se realizó un análisis estadístico descriptivo, aplicando medidas de tendencia central (media) y dispersión (desviación estándar) para las variables cuantitativas, así como frecuencias absolutas y relativas (porcentajes) para las variables cualitativas. Además, se llevaron a cabo análisis de correlación no paramétrica (coeficiente de Spearman) para explorar relaciones entre variables, y un modelo de regresión lineal múltiple para identificar predictores significativos del rendimiento académico. Los análisis estadísticos fueron realizados utilizando el software SPSS (versión 25.0), mientras que la organización preliminar de los datos se gestionó mediante Microsoft Excel.

2.5. Consideraciones éticas

El estudio fue aprobado por el comité de ética en la investigación de la universidad de estudio (código UA-2024-12-17_1). A los estudiantes se les informó, mediante correo electrónico, sobre los objetivos y características del estudio, garantizando que la participación fuera voluntaria, anónima y sin implicaciones académicas. No se solicitaron datos identificativos, como nombres, correos electrónicos o direcciones IP. Los participantes accedieron al cuestionario mediante un enlace digital.

Se respetaron los principios éticos establecidos en la Declaración de Helsinki, así como la normativa vigente en materia de protección de datos personales, conforme a la Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los derechos digitales.

3. RESULTADOS

A continuación, se presentan los resultados obtenidos por ítem del cuestionario de voluntad de trabajo (disposición para el trabajo, la persistencia, el esfuerzo y la responsabilidad), destacando las frecuencias y los porcentajes más representativos.

En general, los participantes manifestaron una voluntad de trabajo moderada, caracterizada por una disposición variable al esfuerzo sostenido y una actitud favorable hacia el cumplimiento de obligaciones, aunque también se evidenciaron ciertas tendencias a la procrastinación o a la necesidad de estímulos externos.

Respecto a la preferencia por actividades que no demandan esfuerzo, el 62.5% de los estudiantes indicó que a veces prefieren actividades que no requieren mucho esfuerzo, mientras que un 22.5% lo hace con frecuencia, mostrando una actitud ambivalente hacia el esfuerzo personal. Además, un 85% admitió necesitar presión externa para cumplir con sus deberes, evidenciando una alta dependencia para la autorregulación.

En contraste, se observó una tendencia positiva en relación con el esfuerzo voluntario para alcanzar mejores resultados (65%). Asimismo, el 60% manifestó realizar un esfuerzo persistente hasta alcanzar sus metas, y el 52,5% indicó que culmina las tareas impuestas aun cuando se siente cansado.

El 62.5% de los estudiantes afirmó no posponer sus actividades y el 87.5% no usa excusas para interrumpir el trabajo, indicando baja evasión activa. Sin embargo, el 57.5% mostró preocupación por retrasos.

En relación con la calidad del trabajo, un 62,5% afirmó que se ocupa más de terminar una tarea bien hecha que de terminarla rápido, lo cual denota una orientación a la calidad más que a la eficiencia. De igual forma, el 70% de los encuestados reportó ser cuidadoso en la toma de decisiones y ejecución de tareas, evidenciando una actitud reflexiva y responsable ante las demandas laborales.

En cuanto al interés temático, un 70% indicó preferir saber un poco de muchos temas en lugar de profundizar en unos pocos, lo que podría reflejar una orientación hacia la diversidad de intereses o hacia una menor especialización.

Finalmente, se exploraron aspectos retrospectivos del comportamiento académico. El 95% de los participantes reconoció que durante su etapa escolar estudiaba solo lo imprescindible para aprobar, lo que sugiere una actitud funcional hacia el aprendizaje en contextos anteriores.

Los resultados de la encuesta de evaluación de la satisfacción con la experiencia en la metodología de ABP muestran un alto nivel de satisfacción general con la experiencia formativa, así como una

percepción favorable de los elementos pedagógicos y logísticos involucrados en el desarrollo del proyecto de aula.

El 100% de los estudiantes valoró el proyecto de aula como fundamental para su formación profesional, destacando la adecuación del proceso, la aplicación práctica de conceptos, y la calidad de la orientación docente. También hubo plena satisfacción con las tutorías, los recursos disponibles y el tiempo asignado para el proyecto.

Aunque la mayoría (78.8%) no encontró difícil idear un proyecto, un 21.3% sí tuvo dificultades, señalando la necesidad de reforzar el acompañamiento inicial en el diseño. Además, el 85% de los estudiantes prefirió el ABP frente a métodos tradicionales, reflejando una clara inclinación hacia metodologías activas y contextualizadas, aunque persisten diferencias individuales en la aceptación de estas alternativas (figura 1).

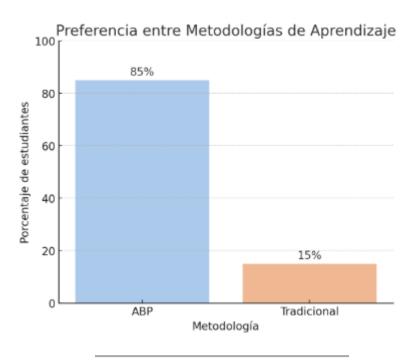


Figura 1. Preferencia metodología aprendizaje.

En conjunto, los datos evidencian una aceptación altamente positiva de la metodología ABP y su implementación en el contexto estudiado, tanto en términos de percepción académica como en aspectos operativos del proceso.

Se llevó a cabo un análisis de correlación de Spearman entre la nota del expediente académico y dos variables: dificultad percibida para encontrar una idea de proyecto y satisfacción con las metodologías de aprendizaje. Los resultados mostraron una correlación positiva significativa entre la nota académica y la dificultad para encontrar la idea ($\rho = 0.540$, p < 0.01), sugiriendo que quienes reportaron mayor dificultad en esta fase inicial tendieron a tener mejores calificaciones (figura 2).

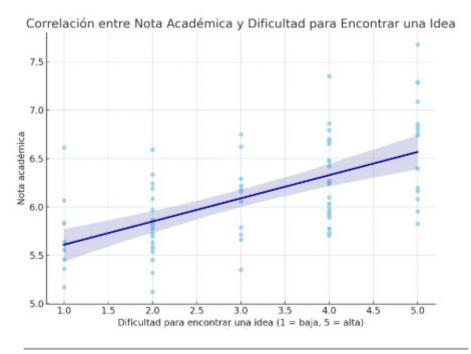


Figura 2. Correlación entre la nota académica y la dificultad de encontrar una idea.

En contraste, no se halló una relación significativa entre la nota académica y la satisfacción con las metodologías empleadas ($\rho = 0.009$, p > 0.05). La correlación entre la dificultad para encontrar la idea y la satisfacción metodológica fue positiva pero débil ($\rho = 0.218$, p = 0.08).

Para evaluar el poder predictivo de las variables mencionadas sobre el rendimiento académico, se realizó una regresión lineal múltiple. El modelo incluyó como predictores la dificultad para encontrar una idea de proyecto y la satisfacción con las metodologías. El modelo resultante fue significativo (F (2, 37) = 4.87, p < 0.05), explicando el 20.8% de la varianza en la nota académica (R^2 = 0.208).

La dificultad para encontrar una idea emergió como un predictor significativo (B = 0.778, p < 0.05), mientras que la satisfacción con las metodologías no alcanzó significación estadística (B = 0.227, p = 0.397) (figura 3).

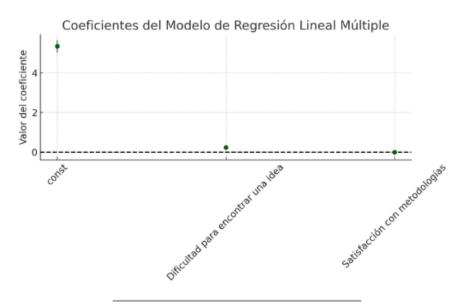


Figura 3. Coeficiente modelo regresión lineal.

4. DISCUSIÓN Y CONCLUSIONES

Los hallazgos de este estudio ofrecen una visión integral de las disposiciones actitudinales y académicas de estudiantes universitarios involucrados en una experiencia ABP. En primer lugar, los niveles observados de voluntad de trabajo, si bien moderados, reflejan una combinación de compromiso y dependencia de estímulos externos. Este patrón coincide con lo reportado Gómez-Pablos et al. (2021), quienes evidenciaron que, en contextos universitarios, la autorregulación sigue siendo un desafío, especialmente cuando las tareas requieren una alta carga cognitiva o esfuerzo sostenido.

La elevada proporción de estudiantes que requieren presión externa para cumplir con sus tareas (85%) sugiere una baja motivación intrínseca. Aunque este patrón es común en entornos con metodologías tradicionales y tiende a reducirse con enfoques activos (Martín-Rodríguez & Fernández-Morante, 2020; Struyven et al., 2022), en este estudio, incluso en un contexto ABP, persiste la dependencia externa, lo que indica la necesidad de fortalecer estrategias pedagógicas orientadas a la autorregulación (León & Morales, 2020).

Por otro lado, la alta proporción de estudiantes que muestran persistencia y esfuerzo para culminar tareas, incluso en condiciones de fatiga (52.5%), denota una capacidad de resiliencia académica que resulta prometedora. Esta capacidad ha sido identificada como un factor protector frente al abandono escolar y al bajo rendimiento, especialmente en entornos exigentes como los estudios en ciencias de la salud (Salanova et al., 2020).

Aunque la mayoría de los estudiantes afirma no postergar tareas ni usar excusas, un 57.5% expresa preocupación por cumplir con retraso, lo que refleja una posible "procrastinación emocional", caracterizada por la coexistencia de ansiedad y evasión de tareas complejas (Steel & Klingsieck, 2021). Este tipo de procrastinación resulta especialmente problemática en contextos ABP, donde la planificación y la constancia son claves para el éxito.

La mayoría de los estudiantes muestra una orientación hacia la calidad en la realización de tareas, lo que respalda estudios que señalan el potencial del ABP para promover un aprendizaje profundo cuando se diseñan adecuadamente la evaluación y la retroalimentación (Dolmans et al., 2022). Esta actitud reflexiva también coincide con lo planteado por Martínez-Monés et al. (2020), quienes destacan que el ABP impulsa el juicio crítico y la toma de decisiones informadas, siempre que exista un acompañamiento docente efectivo.

La preferencia por abarcar múltiples temas en lugar de profundizar puede reflejar un aprendizaje superficial, aunque también puede estar ligada a la necesidad de integrar conocimientos en un proyecto. Barrows y López-Pastor (2023) señalan que esta actitud es común en las etapas iniciales del ABP, pero suele evolucionar hacia una mayor especialización a medida que se fortalecen las competencias investigativas y el pensamiento crítico.

El 95% de los estudiantes reconoció haber estudiado solo lo necesario para aprobar en etapas previas, lo que concuerda con el "aprendizaje estratégico", enfocado en el resultado más que en el proceso (Entwistle & McCune, 2021). Aunque funcional, esta actitud limita una comprensión profunda, lo que refuerza la necesidad de metodologías como el ABP para transformar esta orientación superficial del aprendizaje.

La evaluación del ABP mostró una aceptación unánime de su relevancia para la formación profesional, en línea con Vázquez-Torres et al. (2022), quienes destacan su carácter motivador cuando se vincula a contextos reales. Además, la percepción positiva sobre el acompañamiento docente, los recursos y el tiempo asignado al proyecto coincide con los factores clave para el éxito del ABP identificados por Muñoz-Carril et al. (2021).

Sin embargo, el 21.3% que reportó dificultades para encontrar una idea adecuada evidencia una necesidad de mejora en la fase inicial de orientación. La literatura coincide en que el diseño de la etapa de ideación es crítico en el ABP, y que un acompañamiento deficiente puede afectar negativamente tanto la motivación como el desarrollo del proyecto (Hernández-Torres & Cano-García, 2020).

La preferencia del 85% de los estudiantes por el ABP sobre metodologías tradicionales confirma una tendencia consolidada en la educación superior. Estudios como el de Kirkpatrick y Mulligan (2021) evidencian que las metodologías activas generan mayor satisfacción y percepción de utilidad, especialmente en carreras con fuerte orientación práctica.

El análisis estadístico reveló una correlación positiva entre la dificultad para encontrar una idea y las calificaciones, lo que sugiere que un mayor desafío cognitivo inicial favorece un compromiso más profundo y mejores resultados. Esto se alinea con la teoría del desequilibrio cognitivo de Piaget (1977) y con los hallazgos de Trujillo-Torres et al. (2020), quienes destacan que la dificultad percibida al inicio del proyecto puede mejorar el rendimiento si se cuenta con apoyo adecuado.

En contraste, la falta de correlación entre la satisfacción con la metodología y la nota académica apoya la idea de que la percepción subjetiva del proceso no necesariamente se traduce en mejores desempeños objetivos. Esta disociación ha sido discutida por Chen et al. (2021), quienes advierten que la satisfacción, aunque relevante, no debe ser tomada como único indicador de eficacia pedagógica.

Finalmente, el modelo de regresión refuerza la hipótesis de que la dificultad inicial actúa como un predictor significativo del rendimiento académico. Este hallazgo pone en cuestión la idea tradicional de que el éxito educativo depende exclusivamente de la facilidad de comprensión inicial o del disfrute del método, y sugiere que el esfuerzo y el compromiso desde el inicio del proceso pueden ser determinantes clave.

4.1. Limitaciones

Entre las principales limitaciones de este estudio destaca la ausencia de un grupo control, lo que impide establecer comparaciones directas entre la metodología ABP y otras estrategias docentes tradicionales. Además, el diseño transversal y la dependencia de instrumentos autoinformados limitan la generalización de los resultados y pueden introducir sesgos de deseabilidad social o interpretación subjetiva. La muestra, aunque completa dentro del contexto de la asignatura, se limita a una única cohorte de estudiantes de una universidad específica, lo que reduce la representatividad externa de los hallazgos. Asimismo, no se evaluó el impacto a largo plazo de la intervención ni la transferencia real de competencias al entorno profesional, por lo que sería recomendable realizar estudios longitudina-les complementarios en el futuro.

4.2. Implicaciones pedagógicas

Los resultados de este estudio refuerzan la pertinencia del ABP como una estrategia eficaz para fomentar competencias clave en el alumnado, especialmente en titulaciones aplicadas como la nutrición humana y dietética. La elevada valoración de la metodología por parte del estudiantado, junto con la correlación positiva entre el desafío cognitivo inicial y el rendimiento académico, sugiere que el ABP no solo mejora la percepción de utilidad del aprendizaje, sino que también potencia habilidades como la toma de decisiones, la autonomía y la integración interdisciplinaria. En este sentido, implementar proyectos auténticos ligados al entorno profesional fomenta un aprendizaje significativo y motivador (Vázquez-Torres et al., 2022; Martínez-Monés et al., 2020). Dado que la satisfacción metodológica no predice directamente el rendimiento, es necesario replantear los criterios de éxito pedagógico, integrando satisfacción, adquisición de competencias y profundidad del aprendizaje (Chen et al., 2021). Esto refuerza la importancia de formar al profesorado en el diseño y acompañamiento efectivo del ABP, especialmente en la fase inicial de ideación, clave para el compromiso estudiantil (Muñoz et al., 2021).

4.3. Conclusiones

La implementación del ABP mediante el diseño de EBT en la asignatura "gestión de la calidad" del grado en nutrición humana y dietética se revela como una estrategia efectiva para desarrollar competencias transversales, pensamiento crítico y la integración de teoría y práctica. Los estudiantes muestran alta satisfacción con la metodología, destacando su utilidad formativa, el acompañamiento docente y la aplicabilidad. Aunque muchos requieren estímulos externos para mantener el compromiso, también demuestran una notable disposición al esfuerzo sostenido, reflejando un equilibrio entre motivación extrínseca e intrínseca.

Por otro lado, el análisis estadístico mostró que la dificultad percibida al inicio del proyecto, especialmente en la fase de ideación, se asocia positivamente con el rendimiento académico, indicando que el desafío cognitivo puede fomentar un mayor compromiso. Esto resalta la importancia de un acompañamiento estructurado en las etapas iniciales del ABP. En conjunto, los resultados respaldan el uso de metodologías activas en la educación universitaria, especialmente en disciplinas prácticas, y enfatizan la necesidad de fortalecer estrategias que promuevan la autorregulación y el emprendimiento estudiantil en ciencias de la salud.

5. REFERENCIAS

- Andrés, M. L., Arís, N., & Mas, M. (2013). Voluntad de trabajo: motivación personal para cumplir con las obligaciones. *Revista de Educación*, (361), 574–596.
- Barrows, H., & López-Pastor, V. M. (2023). El aprendizaje basado en problemas: Teoría y práctica en educación superior. Narcea.
- Chen, C., Yang, S., Huang, Y., & Fu, S. (2021). Effects of project-based learning on student learning outcomes: A meta-analysis. *Journal of Educational Research*, 114(2), 135–149. https://doi.org/10.1080/00220671.2020.1849106
- Chen, J., Zou, D., & Xie, H. (2021). Learning satisfaction and academic performance in the context of active methodologies: A meta-analysis. *Educational Research Review*, *34*, 100402. https://doi.org/10.1016/j.edurev.2021.100402
- Dolmans, D. H. J. M., Loyens, S. M. M., Marcq, H., & Gijbels, D. (2022). Deep and surface learning in problem-based learning: A review of the literature. *Advances in Health Sciences Education*, 27(1), 53–70. https://doi.org/10.1007/s10459-021-10048-6
- Dolmans, D. H., De Grave, W., Wolfhagen, I. H., & Van Der Vleuten, C. P. (2005). Problem-based learning: Future challenges for educational practice and research. *Medical Education*, 39(7), 732–741. https://doi.org/10.1111/j.1365-2929.2005.02205.x

- Entwistle, N., & McCune, V. (2021). The disposition to understand for oneself at university and beyond: Learning processes, the will to learn and sensitivity to context. In D. Scott & E. Hargreaves (Eds.), *The Sage Handbook of Learning* (pp. 152–165). SAGE Publications.
- Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. *Proceedings of the National Academy of Sciences*, 111(23), 8410–8415. https://doi.org/10.1073/pnas.1319030111
- Gómez-Pablos, V. B., Del Pozo, M. M., & Muñoz-Repiso, A. G. V. (2021). Aprendizaje autorregulado y metodologías activas: Una revisión crítica. *Educación XXI*, 24(2), 17–40. https://doi.org/10.5944/educXX1.27041
- Gracia-Arnaiz, M. (2018). La educación alimentaria: Discursos y prácticas en nutrición y dietética. *Revista Española de Sociología*, 27(3), 401–418. https://doi.org/10.22325/fes/res.2018.32
- Hernández-Torres, A., & Cano-García, E. (2020). Fases clave del ABP en la educación universitaria: planificación, ejecución y evaluación. *Revista Electrónica Interuniversitaria de Formación del Profesorado*, 23(3), 45–58.
- Kirkpatrick, D., & Mulligan, D. (2021). Active learning strategies and student satisfaction in higher education: A comparative study. *Journal of University Teaching & Learning Practice*, 18(4), 1–16.
- Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of the literature. *Improving Schools*, 19(3), 267–277. https://doi.org/10.1177/1365480216659733
- León, J. A., & Morales, T. (2020). Estrategias de autorregulación del aprendizaje en el contexto del aprendizaje basado en problemas. *Revista Iberoamericana de Educación Superior, 11*(30), 56–74.
- Martínez-Monés, A., Bote-Lorenzo, M. L., & Asensio-Pérez, J. I. (2020). El trabajo en equipo como competencia transversal en la universidad: Evaluación y mejora a través del ABP. *Educación XXI*, 23(1), 163–187. https://doi.org/10.5944/educxx1.24327
- Martínez-Monés, A., Gómez-Sánchez, E., Dimitriadis, Y., & Rubia-Avi, B. (2020). Diseño de experiencias de aprendizaje colaborativo en educación superior: Estrategias desde el aprendizaje basado en proyectos. *Revista de Educación a Distancia*, 20(63), 1–20. https://doi.org/10.6018/red.40923
- Martín-Rodríguez, O., & Fernández-Morante, C. (2020). Motivación y estrategias de autorregulación en entornos de aprendizaje activo. *Revista de Educación a Distancia, 20*(62). https://doi.org/10.6018/red.420381
- Muñoz, D., Medina, R., & Rodríguez, P. (2021). Importancia de la fase de diseño en el aprendizaje basado en proyectos universitarios: Análisis de experiencias docentes en ciencias de la salud. *Educación Médica*, 22(1), 45–52. https://doi.org/10.1016/j.edumed.2021.01.003
- Muñoz-Carril, P. C., González-Sanmamed, M., & Sangrà, A. (2021). Claves del éxito en el aprendizaje basado en proyectos: Revisión sistemática en educación superior. *RED. Revista de Educación a Distancia*, 21(65). https://doi.org/10.6018/red.448011
- OECD. (2023). OECD *Science, Technology and Innovation Outlook* 2023. OECD Publishing. https://doi.org/10.1787/75f79015-en
- Piaget, J. (1977). El Piaget esencial (HE Gruber y JJ Voneche Gruber, Eds.). Basic Books.
- Prince, M. (2004). Does active learning work? A review of the research. *Journal of Engineering Education*, 93(3), 223–231. https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

- Rodríguez-Sandoval, E., & Cortés-Rodríguez, N. (2010). Evaluación de la metodología de Aprendizaje Basado en Proyectos en estudiantes universitarios. *Educación Médica Superior*, 24(1), 45–54.
- Roel, C., Vergara, D., & Álvarez, M. (2013). Competencias transversales en el EEES: Claves para el aprendizaje activo. *Educación XXI*, 16(2), 319–340. https://doi.org/10.5944/educxx1.16.2.729
- Ruiz-López, M. D., Olvera, C. M., & Hernández-Padilla, J. M. (2020). Digital competence in university students of health sciences: A scoping review. *Revista Española de Salud Pública*, 94, e202006058. https://www.mscbs.gob.es
- Salanova, M., Llorens, S., & Martínez, I. M. (2020). Engagement y burnout en estudiantes universitarios: El papel del entorno académico y personal. *Revista de Psicodidáctica*, *25*(1), 57–64. https://doi.org/10.1016/j.psicoe.2019.08.001
- Steel, P., & Klingsieck, K. B. (2021). Procrastination in academic settings: Emotional, behavioral, and cognitive aspects. *Journal of Educational Psychology*, *113*(5), 899–915. https://doi.org/10.1037/edu0000516
- Strobel, J., & van Barneveld, A. (2009). When is PBL more effective? A meta-synthesis of meta-analyses comparing PBL to conventional classrooms. *Interdisciplinary Journal of Problem-Based Learning*, 3(1), 44–58. https://doi.org/10.7771/1541-5015.1046
- Struyven, K., Dochy, F., & Janssens, S. (2022). Students' motivation and perception of assessment: A cross-sectional study in active learning environments. *Assessment & Evaluation in Higher Education*, 47(2), 178–193.
- Thomas, J. W. (2000). A review of research on project-based learning. The Autodesk Foundation. http://www.bie.org
- Trujillo-Torres, J. M., Gómez-García, G., & Fernández-Cerero, J. (2020). Percepción de la dificultad en proyectos educativos y su relación con el rendimiento. *Revista Electrónica de Investigación Educativa*, 22(3), e22. https://doi.org/10.24320/redie.2020.22.e22.2417
- Vázquez-Torres, M. C., Ramírez-Lira, M. A., & Lozano-Rodríguez, E. (2022). El ABP como estrategia de formación profesional en ciencias de la salud: Percepciones estudiantiles. *Revista de Investigación Educativa*, 40(1), 97–116. https://doi.org/10.6018/rie.429951
- Vázquez-Torres, M., González-Robles, A., & López-Cabrera, B. (2022). Percepciones estudiantiles sobre el aprendizaje basado en proyectos en contextos profesionales simulados. *Revista Iberoamericana de Educación Superior*, 13(36), 67–84. https://doi.org/10.22201/iisue.20072872e.2022.36.585

7. La evaluación del aprendizaje informal y horizontal de la lengua italiana a través de microactividades en una comunidad de Facebook

Giordano Paredes, Maria Angelica¹; Villarrubia Zúñiga, María Soledad²

¹Universidad Nacional de Educación a Distancia, ²Universidad de Alicante

RESUMEN

La evaluación del aprendizaje informal plantea nuevos desafíos frente al sistema educativo tradicional. En este contexto, se han desarrollado proyectos innovadores en entornos colaborativos y horizontales que han mostrado resultados positivos. Un ejemplo de ello es el proyecto de innovación docente llevado a cabo en el Área de Filología Italiana de la UNED, que emplea redes sociales para fomentar el aprendizaje informal y horizontal, subrayando la importancia de la participación activa del alumnado en su propio proceso de aprendizaje y valoración de resultados. Este estudio tiene como objetivos analizar el papel del estudiantado en la evaluación a través de metodologías informales, comparar la eficacia de la evaluación formativa con la sumativa y valorar el uso de redes sociales como comunidades de aprendizaje. Para ello, se aplicaron cuestionarios y se analizaron datos cualitativos y cuantitativos. Se utilizaron herramientas tecnológicas como Facebook y otras aplicaciones similares, proponiendo microactividades y tablas de evaluación por competencias. Los resultados indican que las redes sociales facilitan la adquisición de lenguas al permitir la creación de comunidades activas donde el estudiantado desempeña un papel central en su evaluación. Se observa, además, un mayor grado de implicación y un desarrollo más significativo de las competencias lingüísticas y culturales. Aunque los resultados son prometedores, es necesario seguir investigando en este ámbito para consolidar su impacto en la innovación docente.

PALABRAS CLAVE: redes sociales para el aprendizaje de lenguas, evaluación formativa, aprendizaje informal, aprendizaje horizontal, innovación docente.

1. INTRODUCCIÓN

La evaluación del aprendizaje informal ha sido y sigue siendo muy cuestionada porque pretende superar las barreras del sistema tradicional que se ha venido aplicando al aprendizaje formal en la educación reglada en todas sus etapas. La propuesta de alternativas a la evaluación numérica supone muchos cambios radicales para los que el sistema educativo aún no está preparado. Sin embargo, gracias al uso adecuado de las nuevas tecnologías, y específicamente de las redes sociales, se pueden crear comunidades de aprendizaje abiertas, informales y horizontales en las que el estudiantado tiene un rol protagonista como constructor de su propio proceso de aprendizaje.

Las recientes investigaciones en el campo de las redes sociales aplicadas al aprendizaje de lenguas nos revelan resultados esperanzadores, pero, al mismo tiempo, la convicción de que aún queda mucho camino por recorrer. Por lo que se refiere a la lengua italiana, en el Área de Italiano de la Universidad Nacional de Educación a Distancia (UNED, en adelante) se han llevado a cabo varios proyectos de innovación docente y publicaciones relevantes con buenos resultados, como es el caso del trabajo de

Giordano y Moreno titulado Aprendizaje informal y horizontal de lenguas a través de redes sociales: análisis de un caso, del 2023, con aplicación de microactividades y evaluación formativa por competencias. En el 2021 ya se había publicado otro artículo en el que se daban los resultados de un estudio realizado con estudiantes de Acceso a la universidad, siempre de la UNED: Facebook y aprendizaje informal: un nuevo planteamiento metodológico en la enseñanza de lenguas, en el que también se plantea tanto el aprendizaje informal como la evaluación por competencias y el resultado del trabajo colaborativo. En otras lenguas como el inglés, es interesante resaltar los resultados de Galián Peñalver en su publicación Evaluación del uso de Instagram para el aprendizaje y enseñanza de ciertas unidades fraseológicas en inglés como lengua extranjera, del 2024, con un claro planteamiento de evaluación formativa; y el artículo más reciente (2025) de Galián y Giordano sobre Redes sociales para el aprendizaje del italiano y el inglés como lenguas extranjeras: estudio de casos en la enseñanza postobligatoria y universitaria, con el uso de dianas para la evaluación formativa. Para obtener mejores resultados en este tipo de evaluación, es necesario planificar el proceso de aprendizaje y enseñanza a través de competencias, como medio para desarrollar conocimientos y habilidades (Cámara Góngora, 2016), cuya finalidad será siempre la participación del estudiantado en su propio proceso de evaluación (Bizarro et al., 2019). No obstante, implementar la evaluación formativa en comunidades informales no es sencillo debido al arraigo de la evaluación sumativa (Martínez Rizo, 2013) que, sin embargo, se podría cambiar paulatinamente a través de una "evaluación silenciosa" competencial, ya que "no tiene sentido dar un valor numérico a lo que se ha adquirido a través de los procesos cognitivos cooperativos y que será el resultado de la experiencia a lo largo de la vida" (Giordano, 2020, p. 378). En este sentido, la evaluación del conocimiento lingüístico debería tener en cuenta el saber colectivo (Corona Berkin, 2019) y esto explica la importancia de la horizontalidad en el aprendizaje, ya que, como señalan Sancassani et al., el aprendizaje colaborativo es el mejor modo de alcanzar los objetivos propuestos y resolver los problemas junto a los demás, en comunidades de amigos, compañeros e incluso desconocidos, a través de los beneficios que ofrecen las redes sociales (2011). Teniendo en cuenta estos antecedentes, e intentando poner en evidencia la importancia de nuestra investigación en tres planos: informalidad, horizontalidad y evaluación formativa e informal, nos proponemos los siguientes objetivos: i) conocer el papel constructor del estudiantado en el proceso de aprendizaje y evaluación, ii) aplicar metodologías informales y colaborativas al aprendizaje de la lengua italiana, iii) contrastar la eficacia de la evaluación formativa frente a la sumativa y iv) revalorizar las redes sociales como comunidades activas de aprendizaje lingüístico. Para finalizar, planteamos la siguiente hipótesis: las redes sociales, y específicamente Facebook, contribuyen a la adquisición de lenguas gracias a la creación de comunidades en las que es posible, además, la evaluación (autoevaluación y coevaluación) de las competencias, de manera colectiva y autónoma, favoreciendo los resultados de aprendizaje.

En el marco de transformación educativa actual, que está caracterizado por la inclusión de tecnologías emergentes y digitales, su uso en los contextos de aprendizaje se relaciona con la demanda creciente de integración, igualdad y equidad, por eso, es imprescindible plantearse el marco teórico que sustentará la práctica docente. El trabajo que aquí se presenta se relaciona con una perspectiva pedagógica crítica, ya que se plantea la educación como un proceso sociocultural inscrito en diferentes instituciones educativas que no se desliga de un alineamiento ético y transformador. Bajo esta perspectiva, se aborda el contenido de este trabajo. Se analiza el aprendizaje informal y horizontal de la lengua italiana, a través de microactividades en una comunidad de Facebook, y se examinan las implicaciones que tiene este marco educativo para la construcción de una práctica docente reflexiva

en la que es fundamental el compromiso discente. Como se observará, el trabajo se articula bajo varios pilares importantes: la pedagogía crítico-reflexiva, el currículo, las redes sociales y el trabajo activo-significativo del estudiantado. Estos elementos parecen fundamentales para transmitir saberes, avanzar en el aprendizaje lingüístico y fomentar el aprendizaje activo y significativo para una transformación educativa y social.

2. MÉTODO

En esta investigación se aplicó el método cuasiexperimental que supuso su diseño en función de unas relaciones variables, sin grupo de control, ya que son estudiantes a distancia, cuya modalidad de estudio es asíncrona, lo que dificulta crear dos grupos con metodologías diferentes. Se utilizaron dos cuestionarios, uno inicial, al principio del curso académico, y otro final, al acabar el cuatrimestre, para evaluar el uso de las redes sociales en el aprendizaje de la lengua italiana y extraer información sobre la experiencia del estudiantado en este ámbito. La parte cualitativa consistió en respuestas a preguntas abiertas sobre los resultados de aprendizaje y la informalidad como planteamiento metodológico en la evaluación formativa. Se creó una comunidad de aprendizaje privada en la red social Facebook, en la que participaron 107 estudiantes a lo largo de cuatro años. La participación en la comunidad de aprendizaje se estableció de manera voluntaria. Al inicio del curso académico 2021-2022 se comunicó al estudiantado la propuesta de aprendizaje informal y horizontal en la comunidad en Facebook, fuera de la plataforma oficial de la UNED, aunque para acceder al grupo deberían entrar en el curso virtual de la asignatura, por lo que, en cierto modo, la comunidad de Facebook estaba también dentro de la plataforma de la UNED. En el primer curso académico, toda la evaluación se realizó en la comunidad de Facebook, sin embargo, en los siguientes cursos, el estudiantado tenía la opción de participar tanto en el curso virtual como en la comunidad de Facebook, con microactividades diferentes, pero con el mismo tipo de evaluación. En la comunidad, el estudiantado trabajaba de manera colaborativa, interactuando y autoevaluándose, aprendiendo recíprocamente y con un seguimiento paulatino de su propio aprendizaje.

2.1. Descripción del contexto y de los participantes

Se trata de estudiantes de lengua italiana de la asignatura *Lengua Moderna I. Lengua Extranjera: Italiano*, del Grado de Lengua y Literatura Españolas, que participaron entre los cursos académicos 2021 y 2025, en una propuesta de innovación docente desarrollada por el Área de Filología Italiana del Departamento de Filologías Extranjeras y sus Lingüísticas de la Facultad de Filología de la UNED. Los estudiantes responden a los perfiles de la UNED en cuanto a edad, intereses y metodología a distancia, que consiste en el aprendizaje a lo largo de la vida. Aunque están cursando su primera carrera en la UNED, la mayoría ya cuenta con estudios universitarios previos, por lo que en muchos casos se trata de una segunda titulación o de una opción elegida vocacionalmente. El nivel de italiano que se imparte en esta asignatura es el A1-A2 del Marco Común Europeo de Referencia para las Lenguas (MCERL, en adelante). Debido a la variedad de perfiles antes descritos, algunos estudiantes tienen niveles más altos de lengua italiana e incluso, algunos de ellos han vivido o estudiado en Italia. Estos matices en los niveles lingüísticos favorecen la dinámica de las comunidades de aprendizaje en redes sociales, circunstancia que ha resultado especialmente propicia para el desarrollo de esta investigación, centrada en una comunidad de aprendizaje informal y horizontal a través de Facebook.

2.2. Instrumentos

Los instrumentos utilizados para recoger los datos del estudio fueron dos cuestionarios *Google Form*, uno inicial y otro final. El primero, estaba conformado solo por siete ítems; el segundo, por doce, con el fin de evaluar la experiencia en el proyecto de la comunidad de Facebook, con preguntas abiertas. Se establecieron dos requisitos: i) el participante debía tener un perfil personal en Facebook; ii) era imprescindible tener competencias digitales a través de dispositivos electrónicos (ordenador, tablet y/o móvil).

2.3. Procedimiento

El aprendizaje se llevó a cabo mediante la propuesta de microactividades con contenidos lingüísticos y socioculturales que pretendían desarrollar las competencias comunicativa, sociocultural y pragmática establecidas en el MCERL. Se utilizó, por lo tanto, el paradigma del microaprendizaje, cuyos modelos y secuencias didácticas se basan, según Martín-Molina y Romera, en el "aprendizaje basado en problemas, aprendizaje por descubrimiento y aprendizaje basado en ejemplos" (2010, p.160), y que según Hug (en Martín-Molina y Romera, 2010, p. 159), son "momentos o episodios especiales de aprendizaje que utilizan contenidos o tareas especiales dentro de pequeñas etapas" que dependen tanto de los tiempos asignados como de las modalidades y tipos de tareas seleccionadas, con la finalidad de acercar el conocimiento de la lengua meta, en este caso el italiano, a los intereses personales y académicos del estudiantado, posicionándolos en el centro del proceso y permitiéndoles la autonomía en su propia evaluación. Se trata de un proceso que "permite recabar información con la finalidad de examinar y perfeccionar el aprendizaje durante su construcción" (Cruzado-Saldaña, 2022, p. 150), de manera que el estudiantado sea consciente del desarrollo de la adquisición lingüística antes, durante y después del proceso de aprendizaje y se enfrente a los resultados con herramientas constructivas y estrategias que faciliten su progresión.

La dinámica de trabajo se estableció a través de la colaboración recíproca de los diferentes perfiles lingüísticos. Gracias a esta interacción se generaron conocimientos que contribuyeron al aprendizaje y activaron los procesos tanto de autoevaluación como de coevaluación. En la comunidad de aprendizaje intervinieron las docentes de la asignatura de manera colaborativa también; es decir, negociando con el estudiantado los contenidos y la evaluación de los resultados, para constituir una comunidad horizontal. De tal manera, tanto el profesorado como el estudiantado establecieron relaciones de aprendizaje colectivas, que consisten, según Pelfini, "en la adquisición y el ejercicio de la capacidad de reflexionar sobre los límites y las consecuencias de la propia acción y de plantear las necesarias barreras y regulaciones a la misma, las cuales deben tomar en cuenta imprescindiblemente las expectativas y los intereses de otros actores" (2007, p.76); disimulando, de esta manera, las jerarquías verticales de la enseñanza tradicional e intentando llevar a la práctica una propuesta de cambio de paradigma, más al alcance de las expectativas del alumnado del siglo XXI.

En la tabla 1 podemos apreciar las diferentes microactividades que se propusieron al estudiantado, tanto escritas como orales, la metodología aplicada y cómo se llevó a cabo la corrección, al igual que la evaluación continua y final. Se aplicó una metodología colaborativa e informal en un espacio de trabajo de características horizontales en modalidad a distancia. La corrección de las microactividades se realizó de manera conjunta, profesorado-estudiantado, a través de la autocorrección y la colaboración de todos los agentes del proceso de aprendizaje.

Tabla 1. Tipología de microactividades.

Microactividades escritas y orales	Metodología	Corrección	Evaluación
1. Come ti chiami?	Microaprendizaje	Corrección	Autoevaluación
2. Di dove sei e cosa fai?		colaborativa	
3. Come passi il tempo libero?	Aprendizaje		Coevaluación
4. Descrivere la giornata tipo.	colaborativo	Interacción	
5. Ti presento i miei. Scrivere e parlare sulla			Evaluación por
famiglia.	Aprendizaje informal	Feedback	competencias
6. E lei, di dov'è?			
7. Come si arriva?		Autocorrección	Estrategias de
8. Con chi ci sei andata?			aprendizaje
9.~La tua stanza preferita. I ricordi dell'infanzia	Aprendizaje horizontal	Corrección	
(orale).		colectiva	Evaluación
10. La lista della spesa. Il mio piatto preferito (orale).			formativa
11. La valigia. Un regalo particolare (orale).			
12. Dopo la laurea. Appena sarà possibile (orale).			

Fuente: elaboración propia

A continuación, se presentan varios ejemplos de microactividades. Se parte del *input* con la pregunta: *Perché avete scelto l'italiano?* Las respuestas obtenidas reflejan las principales motivaciones que llevan al estudiantado a elegir una lengua como el italiano: generalmente por gusto personal y en segundo lugar por relaciones familiares o intereses relacionados con la cultura.

Figura 1. Microactividad de input.

Fuente: Grupo UNED Italiano. https://www.facebook.com/groups/970065103567717

En el ejemplo (figura 2, Microactividad 11: *La valigia*), se propone una actividad cercana a la experiencia del alumnado. Se trata de la preparación del equipaje para un viaje a una ciudad italiana.

Per la micro attività scritta di questa lezione, vi proponiamo di rispondere a questa domanda:

Cosa metti in valigia se vai una settimana...?

- a Venezia, nel mese di gennaio
- in Sicila, nel mese di agosto.
- a Roma, nel mese di maggio.

Non è necessario rispondere a tutto: con una destinazione è sufficiente

Buon viaggio!

Figura 2. Microactividad 11. La valigia.

Per andare una settimana a Roma a maggio nella mia valigia metterei vestiti per el freddo e per il caldo: pigiama, pantafole, calzini, biancheria intima, una borsa da toilette, pantaloni, alcuni jeans e scarpe comodos. Camicie, maglie, due giacca e un impermeabile, un ombrello e i miei occhiali da sole. Un abito per uscire a cena.

3 años Me gusta Responder

■ Uned Italiano ha respondido · 1 respuesta

Se andassi in Sicilia nella mia valigia metterei mutande, calzini, pantoni lungui e corti, magliette, costumi da bagno, cappelli e occhiali da sole, asciugamani, scarpe e infrandito, maglioni, pigiama, crema solare e i miei libri per leggere.

Fuente: Grupo UNED Italiano. https://www.facebook.com/groups/970065103567717

En este caso, el aprendizaje informal facilita la adquisición de las estructuras lingüísticas de manera espontánea, como bien lo indica Schilhab (2018), cuando habla de la adquisición de contenidos complejos sin que los sujetos sean conscientes. "The learning is simply stored as a difference in response to certain stimuli and not as a conscious rule or strategy subjects control or are capable of volunteering verbally on request" (p. 1); ya que, tal y como lo plantea el MCERL, "la participación activa en la interacción comunicativa es una condición necesaria y suficiente para el desarrollo de la lengua" (2002, p.138), siendo esta la finalidad de una propuesta de aprendizaje informal y horizontal.

Como explica Vázquez (2007) la corrección es el procedimiento previo a la evaluación; sin embargo, tal vez sea más importante y relevante, dado que a veces se concibe la corrección como la incidencia de quien enseña en el idioma de quien aprende y sus productos, por tanto, admitimos que la corrección solo es un componente de la evaluación. En el caso de esta investigación se llevaron a práctica dos tipos de corrección: i) la intervención del profesorado como guía del proceso; ii) la corrección colaborativa, incluida la autocorrección como resultado de la interacción en la comunidad de aprendizaje. Ambas tipologías buscaban la implicación del estudiantado en su propio proceso de aprendizaje, y por consiguiente, en su propia evaluación. El alumnado, por lo tanto, se convierte en el agente principal en todas las microactividades, como se aprecia en las capturas (figuras 3 y 4).

Per andare in gennaio a Venezia, avrò bisogno di un cappotto grosso, magliette termiche, ombrello (veramente necessario), tanti calzini e buone scarpe per il freddo. È una città che adoro, ma che arriva a livelli di umidità veramemte alti. Addirittura, in inverno piove spesso, e se mi bagno i piedi la passerò proprio male!

3 años Me gusta Responder

Uned Italiano Autor Administrador * Colaborador emergente 0 más MERAVIGLIOSO, BUON VIAGGIO!

Figura 3. Intervención del profesorado en la corrección. Fuente: Grupo UNED Italiano. https://www.facebook.com/groups/970065103567717

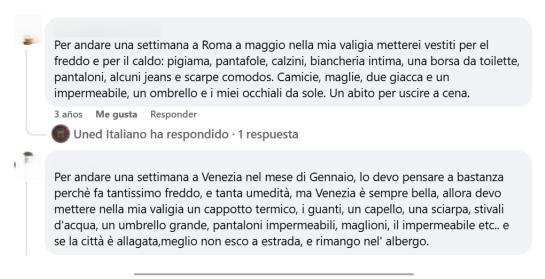


Figura 4. Corrección colaborativa y autocorrección.

Fuente: Grupo UNED Italiano. https://www.facebook.com/groups/970065103567717

La evaluación se propuso como parte integral del proceso de aprendizaje. Esto implica su "intención formativa y desarrollada más bien por procedimientos informales [...] [y] debe realizarse durante todo el proceso y no como un acto de conclusión, pues es durante el mismo que se puede conocer realmente lo que en él sucede y porque durante su desarrollo se puede modificar y perfeccionar la valoración y el propio proceso" (Espinoza-Freire et al., 2021, p.616). El estudiantado no solo realizó un seguimiento de su proceso de aprendizaje, sino que también actuó como agente principal en su evaluación formativa, integrada en el desarrollo de las competencias. Se diseñó una tabla con las competencias generales y las comunicativas y se eligió un baremo basado en la progresión y que va del aprendizaje en proceso hasta el total desarrollo de las competencias; es decir, excelente. El profesorado realizó el seguimiento del desarrollo de las competencias en continua negociación con el estudiantado, quien fue siempre consciente y responsable de su propio proceso y de los avances. La continua comunicación entre estudiantado y profesorado fue dando forma a la tabla de evaluación formativa por competencias que, al final, incluye las observaciones del profesorado con las mejoras y los resultados de aprendizaje y, por último, expone una serie de estrategias que faciliten la continuación del proceso formativo. Es una evaluación motivadora cuya finalidad es premiar los esfuerzos, reforzar las debilidades del aprendizaje y dotar al estudiantado de recursos para enfrentar las expectativas futuras del proceso que debe seguir emprendiendo.

Tabla 2. Evaluación formativa por competencias.

	Competenze	Generali		
	In processo	Bene	Molto bene	Eccellente
Saper essere				
Imparare a imparare				
Iniziativa e creatività				
Competenze Linguistiche e Comu	ınicative			
Lessicale				
Grammaticale				
Ortografica / Fonetica				
Semantica				
Sociolinguistica				
Pragmatica				
Osservazioni: Complimenti per le competenza fonetica e ortografica		ite. Nonosta	ante dovrebbe appro	ofondire la
Strategie: leggere testi semplici e brevi e controllare l'ortografia con				

televisione, ascoltare delle canzoni italiane, consultare e seguire i social network.

Fuente: elaboración propia.

3. RESULTADOS

En el primer ítem del cuestionario inicial: ¿Utilizas las redes sociales? Si la respuesta es afirmativa, indica con qué frecuencia, se obtuvieron 114 respuestas (gráfico 1). El 70% respondió que las utilizaba diariamente; el 17, 5% frecuentemente, el 11,4% poco y el 0,9% nunca.

Era importante confirmar que el estudiantado conocía y controlaba muy bien las herramientas tecnológicas necesarias para la puesta en práctica del proyecto. El segundo ítem, ¿Cuál/Cuáles redes sociales prefieres? (gráfico 2), estableció la elección de la red social que se utilizaría, analizando los beneficios de las más votadas que fueron, específicamente, Instagram (13,4%) y Facebook (11,6%). Aunque en realidad, la mayoría (58%) señaló la opción "varias". Y las demás, X Twitter (4,5%), Youtube (1,8%), WhatsApp (8,9%), ninguna (0,9%), obtuvieron menos resultados.

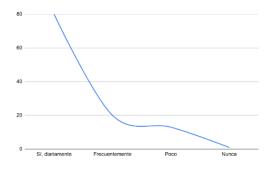


Gráfico 1. Frecuencia de uso de las redes sociales. Fuente: elaboración propia.

A este punto, se valoró el perfil variado de la UNED: estudiantes mayores de 45 años, senior (mayores de 60 años) y jóvenes de entre 18 y 25 años. Esto determinó que se eligiera Facebook (gráfico 2), ya que es una red social utilizada por personas mayores, pero también la usan los jóvenes, aunque ellos prefieran Instagram u otras de contenido más visual y dinámico. Otra razón para elegir Facebook fue que la plataforma permite escribir textos, comentar y argumentar sin límite de espacio, publicar todo tipo de contenidos y aplicaciones. Además, ofrece la posibilidad de interactuar oralmente a través del chat y el Messenger, lo cual es fundamental para desarrollar competencias orales.

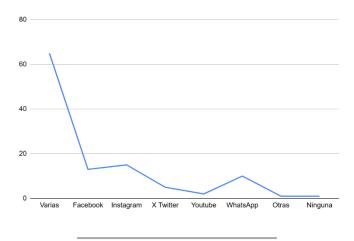
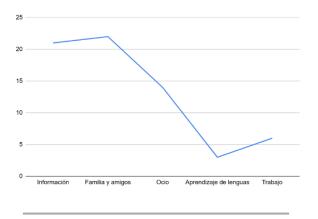



Gráfico 2. Preferencias de redes sociales.

Fuente: elaboración propia

En el tercer ítem, ¿para qué utilizas las redes sociales, se pretendía conocer el uso educativo que el estudiantado hacía de estas herramientas. Como se puede ver en los resultados (gráfico 3): la principal finalidad de uso recae en familia y amigos (33,3%) e información (31,8%), sigue el ocio (21,2%), trabajo (9,1%) y el aprendizaje de lenguas está en el último lugar con el 4,5%, lo que indica que el estudiantado no explota lo suficientemente las redes sociales para mejorar sus competencias lingüísticas y que, probablemente, esto se deba a un desconocimiento de este tipo de metodologías innovadoras

Ωráfico 3. Finalidad del uso de las redes sociales. Fuente: elaboración propia

Sin embargo, sí que son receptivos a conocer las posibilidades didácticas de estas tecnologías. Así, se puede apreciar que el 85% responde afirmativamente, mientras que el resto se mantiene dudoso, de un total de 113 encuestados (gráfico 4).

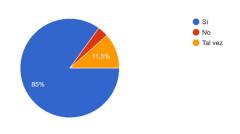


Gráfico 4. Posibilidades didácticas de las redes sociales en el aprendizaje de lenguas.

En cuanto al ítem 5, ¿Crees que podrías mejorar tus conocimientos lingüísticos a través de las redes sociales? la mayoría responde de manera receptiva (66,7%) y el resto manifiesta duda y desconfianza (29,8%), de un total de 114 encuestados. E incluso, hay un comentario en el que el/la estudiante manifiesta que las redes sociales podrían motivar al aprendizaje de lenguas; pero no a mejorar. Estos datos dejan claro que el estudiantado no está muy convencido de que las redes sociales puedan ser eficaces para aprender lenguas; pero sienten curiosidad por probar las propuestas del profesorado (gráfico 5).

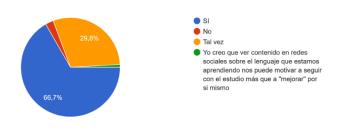


Gráfico 5. Mejora de los conocimientos lingüísticos a través de las redes sociales.

Al final del proceso de aprendizaje y enseñanza en la red social Facebook, mediante la propuesta de microactividades como ya se ha indicado, se aplicó el cuestionario final cuyos resultados se mostrarán de manera cualitativa, a través de respuestas a preguntas abiertas sobre los resultados de aprendizaje.

A continuación se ha hecho selección de 10 respuestas por su relevancia y las evidencias que muestran, entre las 114 totales obtenidas en la encuesta.

E1: Mi opinión es que las redes en general son una herramienta muy potente para el aprendizaje, pero que la mayoría de las personas no las utilizamos con los fines a los que deberían estar destinadas. E2: Es una herramienta útil pero poco conocida para este uso, se conoce más su uso para publicidad o entretenimiento y me gustaría invertir mi tiempo en aprender cosas más útiles. E3: Son buenas mientras el grupo al que estemos unidos sea un grupo serio. Es posible que haya grupos no recomendables por sus contenidos. E4: Creo que las redes sociales son herramientas muy útiles para conectarnos, aprender y expresarnos, pero creo que hay que tener unos límites dado que pueden alejarte de la realidad y pueden ser nocivas haciendo un uso excesivo. E5: Tienen las ventajas de que

si les das un buen uso pueden ofrecerte gran información. La desventaja es la información sesgada o las opiniones personales de los que publican que pueden desanimarte en el estudio y ofrecerte una visión errónea de la asignatura. E6: Me gusta mucho haber descubierto el uso de las mismas para la enseñanza y aprendizaje de lenguas. E7: Creo que a largo plazo pueden ser una herramienta importantísima en todo lo referente a lenguas, ya que permiten que un montón de usuarios con distintas lenguas y niveles interactúen entre ellos, aunque quizás el inglés tiende a monopolizar actualmente la mayoría de las interacciones. E8: Amplían las posibilidades de aprendizaje. Podemos encontrar mucho material sobre cualquier tema. E9: Con responsabilidad se podrían utilizar para fines educativos. E10: Creo que Facebook es un buen recurso didáctico.

De estas respuestas se puede deducir que la mayoría de los encuestados aprueba la utilidad de las redes sociales con fines educativos, y específicamente para el aprendizaje de lenguas, aunque se siguen apreciando incertezas, sobre todo, respecto a la evaluación.

4. DISCUSIÓN Y CONCLUSIONES

En primer lugar, haciendo referencia a la hipótesis planteada al inicio del estudio, se puede afirmar que las redes sociales contribuyen positivamente a la adquisición de lenguas a través de las comunidades de aprendizaje, aunque no se terminan de vislumbrar los resultados en la evaluación dado que la propuesta es, en cierto modo, rompedora con el sistema actual vigente, y eso implica muchas dificultades de implantación. Sin embargo, se puso en práctica con buenos resultados, ya que el estudiantado estaba entusiasmado por su rol de responsable y constructor de su propia evaluación (autoevaluación y coevaluación) del aprendizaje; y de esta manera podía ser consciente del desarrollo de las competencias, es decir, de sus logros y flaquezas. En este sentido, se cumple plenamente el objetivo propuesto sobre el contraste entre la evaluación sumativa y formativa, y la eficacia de esta última. Aunque es constructivo evaluar por competencias, y así se ha demostrado en este estudio, el estudiantado es más receptivo a la evaluación sumativa, pues le da más seguridad tener una nota numérica que un conjunto de estrategias y una tabla de competencias por desarrollar. Por lo que el éxito de este proyecto no quita las dificultades que tiene la implantación de este sistema de evaluación, además de informal, a través de redes sociales, de difícil convicción. En consecuencia, Talanquer (2016) hace referencia a la función docente para que la evaluación formativa pueda ser exitosa, "los docentes que promueven y facilitan el diálogo [...] y actúan de manera reflexiva con base en la evidencia disponible se encuentran en una mejor posición para ayudar a los alumnos a alcanzar los objetivos de aprendizaje deseados" (p. 179). En este caso, se podría conseguir y perfeccionar a través de las comunidades horizontales de aprendizaje que ofrecen las redes sociales.

En segundo lugar, y en cuanto a los objetivos propuestos, se ha verificado la implicación del estudiantado en el proceso de aprendizaje y evaluación, dado que ha participado activamente y de manera reflexiva, reconociendo, al final del proceso, su papel constructor y protagonista, decisivo en sus propios resultados de aprendizaje. Por otro lado, la aplicación de metodologías informales y colaborativas ha contribuido a la motivación y a tener un mayor aprecio por la lengua y cultura italianas. En cuanto al cuarto objetivo, sobre la revalorización de las redes sociales como redes activas de aprendizaje lingüístico, se puede comprobar, según el análisis cualitativo, que el estudiantado se ha replanteado la función didáctica y educativa de dichas aplicaciones, pero no su total eficacia.

Estos resultados se alinean con estudios previos como el de Galián Peñalver (2024) con Instagram para el aprendizaje del inglés, quien concluye que "mientras mayor era el número de actividades rea-

lizadas, mayores eran las mejoras en el post-test" (p. 81); y Orozco (2006), quien ya sostenía que el aprendizaje en contextos informales, aunque estén planificados, responden siempre a una intención profunda que se debe tener en cuenta en cualquier proceso evaluativo.

A pesar de los óptimos resultados que se obtuvieron, esta investigación, como es lógico, presenta algunas limitaciones que se deberían tener en cuenta para futuros trabajos. En primer lugar, es evidente la ausencia de un grupo control lo que imposibilita las comparaciones sistemáticas en el aprendizaje a través de redes sociales. Sin embargo, este factor no fue el objetivo principal del trabajo. No obstante, los datos obtenidos son valiosos para futuras fases del proyecto. Por otra parte, es evidente que el factor de la voluntariedad para participar fue un hándicap, y creemos que ha podido influir en el compromiso del alumnado lo que ha podido generar un sesgo positivo en los resultados finales. Estos dos aspectos, comunes en investigaciones educativas cualitativas hubieran permitido una mayor hetereogeneidad en la respuesta, al contar con una muestra más diversificada, con mayor diversidad de perfiles y experiencias. Sin embargo, estas limitaciones no invalidan los resultados obtenidos.

Los resultados mostrados en este artículo son lo suficientemente interesantes para llevar el proyecto a otros contextos y niveles educativos (como la formación obligatoria, secundaria y la formación profesional o de adultos). Se trata de beneficiarse del diseño de esta propuesta, pero también, la posibilidad de contrastar su aplicabilidad y la eficacia de estas dinámicas de aprendizaje activo y colaborativo, cumpliendo así con una metodología cualitativa-contrastiva. Una posible línea de continuidad, de hecho, sería la creación de comunidades virtuales interinstitucionales para intercambiar buenas prácticas entre docentes y discentes que consoliden las redes de aprendizaje horizontal. El aprendizaje-enseñanza de lenguas y contenidos, y su evaluación en línea con la innovación, la integración, la igualdad y la equidad educativa.

En síntesis, este proyecto ha servido para explorar nuevas y mejores posibilidades de innovación docente, en consonancia con investigaciones previas (Vázquez, 2007; Cruzado-Saldaña, 2022, Galián Peñalver, 2024). Se puede concluir que aprender lenguas en comunidades horizontales a través de redes sociales es productivo y eficaz, corroborando así la hipótesis planteada, aunque todo depende de los perfiles, niveles lingüísticos y de las expectativas del alumnado. Por lo tanto, queda mucho camino por recorrer y la apertura a futuras investigaciones que dé espacio también a otras herramientas más actualizadas, sofisticadas y eficientes, como la Inteligencia Artificial Generativa, para seguir transformando el modelo educativo tradicional, tanto en la forma de enseñar como en la manera de evaluar, hacia un paradigma más acorde con enfoques innovadores actuales.

5. REFERENCIAS

Bizarro, W., Sucari, W. y Quispe Coaquira, A. (2019) Evaluación formativa en el marco del enfoque por competencias. *Revista Innova Educación*, *1*(3), 374-390. https://doi.org/10.35622/j.rie.2019.03.r001.

Cámara Góngora, M. (2016). Evaluación por competencias: técnicas informales, semi-informales y formales. *Investigación*, 10, 14-37.

Corona Berkin, S. (2019). Producción horizontal del conocimiento. Calas.

Cruzado Saldaña, J.J. (2022). La evaluación formativa en la educación. *Comuni@cción. Revista de Investigación en Comunicación y Desarrollo*, 13(2), 149-160. https://doi.org/10.33595/2226-1478.13.2.672.

- Espinoza Freire, E. E., León González, J. L. y Ramírez López, J. A. (2021). La evaluación por competencias. *Universidad y Sociedad, 13*(S3), 612–628. Recuperado a partir de https://rus.ucf.edu.cu/index.php/rus/article/view/2529.
- Galián Peñalver, M. (2024). Evaluación del uso de Instagram para el aprendizaje y enseñanza de ciertas unidades fraseológicas en inglés como lengua extranjera. *Estudios Humanísticos. Filología*, (46), 61–82. https://doi.org/10.18002/ehf.i46.8331.
- Giordano Paredes, M.A. (2020). ¿Cómo evaluar el *Informal Learning*? Una propuesta didáctica. En *Edunovatic 2020, Conference proceedings* (pp. 376-380). Adaya Press.
- Instituto Cervantes (2001). *Marco común europeo de referencia para las lenguas: aprendizaje, enseñanza, evaluación*. MECD-Anaya. http://cvc.cervantes.es/ensenanza/biblioteca_ele/marco/.
- Martín Molina, J. y Romero, D. (2010). Ambiente de Aprendizaje Móvil basado en Micro-Aprendizaje. *IEEE-RITA*, *5*(4), 159-165.
- Martínez Rizo, F. (2013). Dificultades para implementar la evaluación formativa. Revisión de literatura. *Perfiles Educativos*, *35*(139), 128-150. Recuperado el 26 mayo de 2025 de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-26982013000100009&lng=es&tlng=es.
- Orozco, C. E. (2006). ¿Medir lo inmensurable? Evaluar el aprendizaje en ambientes informales. *Sinéctica*, 26, 94-97.
- Perfini, A. (2007). Las tres dimensiones del aprendizaje colectivo. *Persona y Sociedad*, *21*(3), 75-89. https://doi.org/10.53689/pys.v21i3.152.
- Sancassani, S., Brambilla, F., Marenghi, P. y Menon, S. (2011). *E-Colaboration. Il senso della Rete. Metodo e strumenti per la collaborazione online*. Apogeo Education.
- Schilhab, T. (2018). Vertical and horizontal learning. Some characteristics of implicit and explicit learning. *Evolucion and Cognition*, 9(2), 1-8.
- Talanquer, V. (2016). La importancia de la evaluación formativa. *Educación química*, *26*(3), 177-179. https://doi.org/10.1016/j.eq.2015.05.001.
- Vázquez, G. (2007). De la Corrección de errores a la evaluación de las competencias: impacto de la evaluación sobre las personas y la sociedad. En S. Pastor Cesteros y S. Roca Martín (Eds.), *La evaluación en el aprendizaje y la enseñanza del español como LE/L2*. XVIII *Congreso internacional de la ASELE* (pp. 45-55).

8. Aprender a escribir con inteligencia artificial: impacto formativo en Comunic@ndoUA¹

Iglesias-García, Mar; López-Álvarez, Héctor

Universidad de Alicante

RESUMEN

Este trabajo analiza el impacto de la inteligencia artificial en la redacción y en la formación del alumnado universitario a través del proyecto *Comunic@ndoUA*, ciberperiódico del Grado en Publicidad y Relaciones Públicas de la Universidad de Alicante. A partir de una metodología mixta, que combina encuestas, observación directa y análisis textual, se evalúan los beneficios de herramientas de IA en la mejora de la corrección, la claridad y la eficiencia editorial, así como los riesgos derivados de su uso excesivo y no reflexivo. Los resultados muestran una mejora significativa en la calidad de los textos, una mayor eficacia en los tiempos de redacción y una adaptación más eficaz al público juvenil objetivo. No obstante, se detecta una preocupante tendencia a delegar el proceso creativo en la IA, lo que plantea desafíos éticos, expresivos y pedagógicos. Se concluye que es necesario integrar la alfabetización algorítmica en el currículo universitario, fomentar el pensamiento crítico y promover un uso equilibrado de estas tecnologías. La formación debe guiarse por criterios éticos, creativos y reflexivos que garanticen la autonomía intelectual del alumnado en contextos mediáticos híbridos.

PALABRAS CLAVE: inteligencia artificial generativa, innovación educativa, educación superior, redacción online.

1. INTRODUCCIÓN

La irrupción de la inteligencia artificial (IA) en los entornos educativos representa uno de los fenómenos más transformadores de la última década. Su aplicación se extiende progresivamente a múltiples disciplinas, afectando de manera directa los procesos de enseñanza-aprendizaje, la producción de contenidos y la adquisición de competencias digitales. En el contexto de la educación superior, la incorporación de herramientas de IA plantea interrogantes fundamentales sobre la autoría, la creatividad y la autonomía del aprendizaje, al mismo tiempo que abre posibilidades inéditas para la mejora de la calidad de la información (Crompton y Burke, 2023).

En el ámbito de la formación en comunicación, estas transformaciones tienen una repercusión especialmente significativa. Las tecnologías basadas en IA no solo automatizan tareas, sino que modifican las dinámicas de creación de contenido, estableciendo nuevas relaciones entre emisor, mensaje y receptor. Las universidades, como espacios de construcción crítica del saber, tenemos el reto de integrar estas herramientas de manera ética y pedagógica, asegurando que su uso contribuya al desarrollo integral del estudiantado (Chan y Colloton, 2024).

¹ El presente trabajo ha contado con una ayuda del Programa de Redes de investigación en docencia universitaria del Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2023). Ref.: 6002

Uno de los ámbitos más sensibles a estos cambios es la información online. En este campo, la automatización de contenidos mediante algoritmos ha crecido de forma notable en la última década. Diakopoulos (2019) analiza cómo los sistemas algorítmicos están reconfigurando el ecosistema mediático, desde la redacción de noticias hasta la personalización de audiencias, planteando nuevas tensiones en torno a la transparencia, la responsabilidad editorial y la credibilidad informativa. Esta evolución exige que los futuros profesionales de la comunicación no solo conozcan estas herramientas, sino que desarrollen habilidades críticas para comprender sus límites y consecuencias.

Desde una perspectiva docente, Gómez-Diago (2022) subraya la necesidad de formar al estudiantado en el uso consciente y reflexivo de la IA aplicada a la comunicación online. Según su revisión de experiencias educativas en universidades españolas, el reto no está solo en incorporar nuevas tecnologías, sino en repensar los objetivos y métodos de enseñanza para adaptarse a una cultura mediática híbrida. En este sentido, es fundamental generar espacios de aprendizaje que combinen producción real con reflexión ética, permitiendo al alumnado experimentar con herramientas avanzadas sin renunciar a su rol como autores y autoras.

La docencia en materias como *Comunicación y medios escritos* se enfrenta al desafío de mantener la exigencia expresiva y argumentativa en un contexto donde la IA facilita redacciones automáticas y estructuras coherentes sin esfuerzo humano. Esta tensión entre eficacia tecnológica y formación humanística plantea un nuevo marco de reflexión sobre el papel del profesorado como guía y del alumnado como autor consciente. Investigaciones recientes insisten en que la alfabetización en IA debe formar parte del currículo universitario, con el fin de dotar al estudiantado de competencias no solo técnicas, sino también críticas y comunicativas (McDonald et al., 2024).

Diversos estudios empíricos recientes han documentado el impacto de la inteligencia artificial generativa en el desarrollo de competencias como la escritura argumentativa, la autonomía expresiva y el pensamiento crítico en entornos de educación superior (Cebrián Cifuentes, 2024; McDonald et al., 2024). Asimismo, se destacan diseños instruccionales centrados en la integración ética de estas herramientas en la enseñanza universitaria, lo cual aporta un marco teórico complementario para interpretar los hallazgos.

La experiencia desarrollada en el ciberperiódico *Comunic@ndoUA* permite explorar esta intersección entre innovación tecnológica y aprendizaje significativo. Desde su creación, esta plataforma ha funcionado como laboratorio de experimentación docente, donde el estudiantado produce contenidos reales bajo criterios periodísticos. En el curso analizado, se incorporaron de manera sistemática herramientas de IA a lo largo del proceso editorial: desde la ideación de temas hasta la generación de textos e imágenes. Este contexto ofrece un marco idóneo para analizar las potencialidades y límites del uso de la IA en la formación universitaria en comunicación.

Este artículo tiene como objetivos: evaluar el impacto de la IA en la calidad formal y comunicativa de los textos publicados en *Comunic@ndoUA*; analizar el desarrollo de competencias digitales, redaccionales y creativas del alumnado; identificar riesgos derivados de una posible dependencia tecnológica, y proponer estrategias pedagógicas para una integración responsable de estas herramientas en el aula.

2. MÉTODO

2.1. Descripción del contexto y de los participantes

El presente estudio se llevó a cabo en la Universidad de Alicante, en el marco de la asignatura obligatoria *Comunicación y medios escritos* del Grado en Publicidad y Relaciones Públicas. Esta asignatura combina teoría de la comunicación escrita, prácticas de redacción periodística y reflexión crítica sobre los medios. Durante el curso académico 2024–2025, se ha implementado el proyecto de innovación docente que incluye el uso sistemático de herramientas de inteligencia artificial generativa en las tareas de redacción, edición y maquetación del ciberperiódico *Comunic@ndoUA*.

El proyecto fue evaluado como parte de la calificación formal de la asignatura, representando un 10% de la nota final. Paralelamente, se ofreció como actividad con valor extracurricular a quienes quisieran profundizar en competencias avanzadas de redacción digital, permitiendo así una doble vía de participación y reconocimiento académico.

Participaron en la experiencia 87 personas, con una media de edad de 19,2 años, pertenecientes al primer curso del Grado. La muestra fue diversa en cuanto a nivel de competencia digital previa, pero homogénea respecto a su experiencia en producción periodística. Se trataba de la primera vez que este grupo utilizaba IA de manera estructurada como parte de su formación académica, lo que permitió observar procesos de apropiación tecnológica en tiempo real. El diseño del proyecto garantizaba la participación activa del alumnado en todas las fases, en consonancia con un enfoque de aprendizaje basado en proyectos (PBL).

El contexto en el que se inserta *Comunic@ndoUA* es especialmente adecuado para explorar los efectos pedagógicos de la IA, ya que combina un entorno real de publicación con una orientación formativa explícita. Según Chan y Colloton (2024), este tipo de espacios híbridos facilita el desarrollo de competencias comunicativas aplicadas, al mismo tiempo que permite al estudiantado experimentar con formatos y tecnologías emergentes.

2.2. Instrumentos

Para la recogida y análisis de datos se utilizaron tres instrumentos principales. En primer lugar, se ha diseñado una encuesta estructurada con 15 ítems, que combinan escalas tipo Likert y preguntas abiertas. Esta encuesta ha permitido obtener información cuantitativa y cualitativa sobre la percepción del alumnado respecto al uso de herramientas de IA. Fue aplicada de forma anónima al finalizar el proyecto y alcanzó una tasa de respuesta del 93%.

La encuesta incluyó 15 ítems agrupados en cuatro dimensiones: percepción de utilidad, impacto en el aprendizaje, uso ético de la IA y satisfacción con el proceso. Las preguntas fueron validadas mediante juicio de personas expertas y prueba piloto en una cohorte anterior.

En segundo lugar, se ha aplicado una técnica de observación directa no participante durante las sesiones prácticas. Los criterios de observación directa fueron seleccionados en función de los objetivos del proyecto, priorizando aspectos como iniciativa autónoma, colaboración entre pares, responsabilidad editorial y pensamiento crítico. El equipo docente registró, mediante hojas de observación, aspectos relacionados con el grado de autonomía, la colaboración entre pares, el uso ético de las herramientas y la capacidad de adaptación a los distintos tipos de contenido periodístico (noticias, entrevistas, reportajes). Esta técnica permite triangulación con los datos de la encuesta.

Finalmente, se ha realizado un análisis textual de 20 artículos elaborados por el estudiantado y publicados en *Comunic@ndoUA*, seleccionados mediante muestreo aleatorio estratificado. Se ha utilizado una rúbrica de evaluación que consideraba dimensiones como claridad, coherencia, adecuación al público, creatividad y uso consciente de IA. Los indicadores de la rúbrica se basaron en cinco dimensiones: claridad, coherencia, creatividad, adecuación al público y uso consciente de IA. Cada dimensión fue ponderada con un valor de 1 a 5, obteniendo una puntuación total que facilitó el análisis comparativo. Este tipo de análisis ha sido validado en estudios similares centrados en la evaluación de competencias de escritura mediada por tecnología (Gómez-Diago, 2022).

La combinación de instrumentos cualitativos y cuantitativos responde a un enfoque mixto, que permite captar no solo datos objetivos sobre el rendimiento, sino también las valoraciones subjetivas del estudiantado y el contexto de uso (McDonald et al., 2024). De esta forma, se aspira a comprender el fenómeno desde una perspectiva integral.

2.3. Procedimiento

El proyecto se desarrolló a lo largo de 8 semanas y se estructuró en dos fases diferenciadas. En la primera fase, de carácter formativo, se impartieron dos sesiones teóricas sobre fundamentos de inteligencia artificial, aplicaciones prácticas en comunicación, dilemas éticos y técnicas de prompting. Estas sesiones sirvieron para dotar al alumnado de los conocimientos básicos necesarios para un uso informado y responsable de las herramientas de IA.

En la segunda fase, de carácter práctico, el estudiantado comenzó a trabajar en la elaboración de contenidos periodísticos reales. Se les asignaron temas dentro de las secciones habituales de *Comunic@ndoUA* y se les ofreció libertad para elegir las herramientas que consideraran más útiles para su proceso creativo. Algunas de las más utilizadas fueron ChatGPT para redacción, Grammarly y LanguageTool para corrección, y generadores de imágenes como DALL·E y Canva IA.

Todo el trabajo fue supervisado por el equipo docente, que ha ofrecido retroalimentación individualizada y ha evaluado los textos con base en rúbricas acordadas al inicio del proyecto. Esta supervisión se ha centrado no solo en los resultados, sino en los procesos: se ha valorado especialmente la capacidad del alumnado para justificar sus decisiones de uso tecnológico y para distinguir entre aportación propia y automatizada.

Durante el proceso, se animó al estudiantado a documentar sus decisiones mediante diarios reflexivos opcionales, y recopilación de los *prompts* usados, que también se tuvieron en cuenta en el análisis final. Este procedimiento ha permitido identificar patrones de uso, niveles de dependencia tecnológica y capacidades de autorregulación, tal como recomiendan los estudios recientes sobre integración de IA en educación superior (Crompton y Burke, 2023).

3. RESULTADOS

El análisis de los datos recogidos a través de encuestas, observación directa y análisis textual de las producciones del alumnado permite afirmar que la incorporación de inteligencia artificial en el entorno de *Comunic@ndoUA* tuvo un impacto claramente positivo en diversas dimensiones del aprendizaje y de la calidad de los contenidos generados. Los resultados revelan una mejora generalizada en la calidad técnica, expresiva y visual de los textos, así como una mayor eficacia en los tiempos de producción.

3.1. Resultados de la encuesta

Uno de los hallazgos más contundentes ha sido la drástica reducción de errores ortográficos y gramaticales. Mientras en cursos anteriores las entregas presentaban errores frecuentes de concordancia, puntuación o acentuación, el análisis de los artículos elaborados con asistencia de IA mostró una mejora del 99% en este aspecto. Esta cifra se obtuvo mediante comparación con ejercicios corregidos de cursos previos. Las funciones de autocorrección integradas en ChatGPT, así como la

posibilidad de reescribir fragmentos tras pedir sugerencias estilísticas, se consolidaron como recursos de gran utilidad para el estudiantado, quienes destacaron la claridad y velocidad de respuesta del sistema.

Además, el 82% del alumnado afirma que la IA les ha ayudado a redactar con mayor claridad, mientras que el 68% señala que les ha facilitado la organización de ideas y la coherencia narrativa. El 76% indica que logró reducir entre un 30% y un 50% el tiempo habitual dedicado a la redacción, lo que permitió invertir ese margen en otras tareas relevantes, como la búsqueda de fuentes, la profundización temática o la elaboración de materiales visuales. Este tipo de optimización ha sido especialmente valorada en las entrevistas y reportajes, donde el proceso de documentación es más complejo.

Tabla 1. Impacto percibido en la redacción asistida por IA.

Indicador	Porcentaje (%)	
Mejora en la claridad de redacción	82%	
Mayor coherencia narrativa	68%	
Reducción de errores ortográficos y gramaticales	99%	
Reducción del tiempo de redacción en un 30-50%	76%	
Uso de herramientas de generación visual (IA)	100%	
Mejora en la calidad visual percibida	87%	

Fuente: Elaboración propia.

La encuesta mostró también que el 41% reconoció haber utilizado, en alguna ocasión, el texto generado por la IA sin modificaciones, mientras que el 83% indicó haber aprendido a diseñar prompts más precisos y a evaluar críticamente las respuestas. Estos resultados evidencian, al mismo tiempo, la utilidad percibida, los riesgos de dependencia y el valor de la alfabetización algorítmica.

Los resultados aquí presentados corresponden al conjunto de la muestra. No se realizaron análisis comparativos por sexo ni nivel de competencia digital, lo que deberá abordarse en investigaciones futuras.

3.2. Resultados de la observación directa

La sistematización de las hojas de observación mostró patrones claros: en los grupos con retroalimentación frecuente, los estudiantes distinguieron mejor entre aportaciones propias y automatizadas, mientras que en grupos con menor supervisión aumentaron los casos de textos generados íntegramente con IA. También se registraron actitudes de mayor colaboración entre pares cuando existían dinámicas de revisión cruzada.

La observación directa evidenció que el acompañamiento docente fue clave para fomentar un uso equilibrado de la IA. En los grupos que contaron con sesiones de retroalimentación frecuentes, el alumnado mostró una mayor capacidad para distinguir entre lo automatizado y lo autoral, y para justificar críticamente sus elecciones. En cambio, en contextos con menor supervisión, se detectaron más casos de textos generados en su totalidad por IA, con escaso nivel de intervención humana.

3.3. Resultados del análisis textual

En relación con el contenido visual, el 100% del alumnado utilizó sistemas de IA para generar las imágenes que acompañaban sus textos. Esta incorporación masiva contribuyó a una mejora estética del conjunto del ciberperiódico, con piezas visualmente más impactantes y personalizadas. No obstante, también generó un efecto de uniformización gráfica. Un 58% expresó que las imágenes obtenidas, a pesar de ser técnicamente correctas, tendían a parecerse demasiado entre sí. Este fenómeno se atribuye al uso de los mismos modelos de generación y a la reproducción de patrones estilísticos similares, lo que limita la diversidad expresiva y el carácter distintivo de los artículos.

El análisis de los 20 artículos seleccionados reveló mejoras en claridad, coherencia y adecuación al público en comparación con ejercicios de cohortes anteriores. Los textos que habían sido reelaborados a partir de borradores de IA obtuvieron mayor puntuación en creatividad y riqueza léxica, mientras que los textos entregados con mínima edición fueron evaluados como más planos y previsibles.

El uso de ChatGPT como principal herramienta de apoyo generativo fue valorado de forma ambivalente. Si bien el alumnado destacó su utilidad para generar borradores rápidos, reformular ideas o resumir textos, también señalaron que los resultados eran a veces demasiado genéricos o previsibles. Un 41% reconoció que, en alguna ocasión, utilizó el texto generado por la IA sin modificaciones sustanciales, lo que afectó negativamente a la expresividad y autenticidad del contenido. Esta tendencia refuerza lo señalado por Chan y Colloton (2024), quienes advierten que la IA generativa, si no se contextualiza pedagógicamente, puede fomentar prácticas de escritura pasiva o poco reflexiva.

Del mismo modo, McDonald et al. (2024) advierten sobre los riesgos de automatización excesiva en entornos de educación superior, donde la velocidad y la precisión técnica pueden desplazar habilidades como el pensamiento crítico, la argumentación propia y la toma de decisiones editoriales. En *Comunic@ndoUA*, se constató que aquellos textos en los que el alumnado había reescrito y reorganizado activamente los borradores sugeridos por la IA presentaban una mayor riqueza léxica, una voz narrativa más personal y una estructura más coherente con el enfoque periodístico.

Además, el 83% del alumnado manifestó haber aprendido a interactuar de forma más precisa con los modelos generativos, elaborando mejores instrucciones (*prompts*) y evaluando críticamente las respuestas. Este aprendizaje se relaciona con el concepto de alfabetización algorítmica, cada vez más relevante en la formación universitaria en comunicación. En este sentido, Gómez-Diago (2022) destaca que la clave no es tanto enseñar a usar estas herramientas como fomentar una cultura de análisis crítico de los resultados generados, integrando la dimensión ética y profesional del uso de IA en contextos comunicativos reales.

El debate sobre la autoría y la creatividad fue otro de los ejes más comentados por el estudiantado. El 70% defendió la incorporación habitual de la IA a la docencia universitaria, aunque un 48% manifestó preocupación por la pérdida de autenticidad en los textos y por una posible dependencia tecnológica. Esta tensión refleja un dilema ya presente en el entorno profesional, donde la IA es vista al mismo tiempo como aliada técnica y como amenaza para la voz personal del periodista (Montal y Reich, 2017; Mayoral Sánchez, Parratt Fernández y Mera Fernández, 2023). Esta dualidad se trasladó también al aula, donde el profesorado jugó un papel determinante a la hora de orientar y matizar las expectativas sobre la IA.

3.4. Síntesis comparativa de resultados

La integración de los tres instrumentos confirma la validez del enfoque mixto: la encuesta reflejó percepciones y actitudes, la observación directa permitió identificar patrones de uso y dependencia, y el análisis textual evidenció diferencias en la calidad y creatividad de los textos. La triangulación de estas evidencias refuerza la solidez de los hallazgos y facilita la interpretación crítica posterior.

4. DISCUSIÓN Y CONCLUSIONES

La experiencia desarrollada en el entorno de *Comunic@ndoUA* confirma que la incorporación pedagógica de herramientas de inteligencia artificial puede desempeñar un papel transformador en la formación universitaria en comunicación. Los resultados obtenidos evidencian mejoras sustanciales en múltiples dimensiones del proceso de aprendizaje, desde la calidad técnica de los textos hasta el fortalecimiento de competencias digitales y expresivas. La reducción significativa de errores ortográficos y gramaticales, así como la mejora en la claridad estructural de los artículos, son indicios concretos del valor que puede aportar la IA cuando se integra de manera estratégica y supervisada en contextos formativos.

Sin embargo, este potencial no está exento de riesgos. Los datos revelan que, en ausencia de una orientación crítica, la facilidad que ofrecen los sistemas generativos puede fomentar prácticas de escritura automatizada que diluyen la voz autoral del estudiantado. Este fenómeno es particularmente acusado entre quienes presentan inseguridad en sus competencias redaccionales o manifiestan un enfoque instrumental hacia la escritura, lo cual coincide con diagnósticos previos sobre el impacto no neutral de la IA en la educación superior (Chan y Colloton, 2024). Este hallazgo subraya la importancia de una mediación docente constante, que ayude a los y las estudiantes a comprender los límites de la automatización y a reclamar su agencia como productores de discurso.

Asimismo, se ha constatado una tendencia preocupante hacia la uniformización estética en el contenido visual generado por IA. Aunque estas imágenes cumplen con estándares técnicos elevados, su homogeneidad estilística empobrece la diversidad expresiva y puede reducir la singularidad de las propuestas comunicativas. Este efecto de estandarización automatizada, observado también en otros estudios sobre integración de IA en medios (Gómez-Diago, 2022), plantea interrogantes sobre el equilibrio entre eficacia técnica y riqueza cultural en el ecosistema comunicativo académico.

Desde el punto de vista metodológico, la experiencia confirma la eficacia del aprendizaje basado en proyectos como marco para integrar la tecnología de forma significativa. La combinación de producción real con reflexión crítica permitió al estudiantado no solo desarrollar competencias técnicas, sino también construir un posicionamiento ético y autorreflexivo respecto al uso de IA. En este sentido, destaca el valor del acompañamiento docente como elemento estructurador del proceso de aprendizaje: allí donde hubo retroalimentación constante y rúbricas claras, se observó un uso más consciente, creativo y crítico de las herramientas.

Estos hallazgos se alinean con la literatura sobre aprendizaje basado en proyectos en educación superior (Roger Monzó, Cabrera y Mestre Pérez, 2023), que destaca la combinación de producción real y reflexión crítica como vía para desarrollar competencias digitales y expresivas. También dialogan con investigaciones sobre ética de la automatización (Chan y Colloton, 2024) y sobre estrategias de evaluación en entornos híbridos (Cebrián Cifuentes, 2024).

Por otra parte, emergen con fuerza nuevas competencias clave para los y las profesionales de la comunicación, como la capacidad de diseñar *prompts* efectivos, evaluar resultados automatizados

y detectar sesgos algorítmicos. Estas habilidades forman parte de lo que se ha denominado alfabetización algorítmica y deben ser consideradas esenciales en los actuales y futuros planes de estudio (McDonald et al., 2024). Su dominio no se limita al uso funcional de herramientas, sino que implica una comprensión profunda de las implicaciones sociales, éticas y epistemológicas de la inteligencia artificial en la producción de conocimiento y sentido.

A partir de los hallazgos de esta investigación y en sintonía con las tendencias detectadas en el contexto académico actual, se consideran imprescindibles varias acciones. Así, resulta fundamental integrar la alfabetización digital y algorítmica en los programas de estudios de comunicación, no como competencias opcionales sino como parte troncal de la formación profesional (Roger, Cabrera y Mestre Pérez, 2023). La capacidad de dialogar críticamente con la tecnología debe entenderse como un saber estructural para quienes aspiran a intervenir de forma responsable en el espacio público mediático.

También se recomienda promover actividades docentes que combinen la producción automatizada con fases de revisión, reescritura y análisis crítico. Esta combinación permite al estudiantado apropiarse de los beneficios de la IA sin renunciar a su papel activo en la construcción del mensaje. El énfasis debe situarse en fomentar procesos de creación que vayan más allá de la reproducción automática de patrones, recuperando el valor de la expresividad individual, la contextualización y la argumentación ética.

Además, se debe incentivar la diversidad visual en las tareas de creación, evitando la dependencia de modelos estéticos homogéneos y abriendo espacio a la experimentación gráfica. Ello implica, entre otras cosas, formar al estudiantado en los límites y sesgos de los generadores visuales, e impulsar dinámicas de revisión cruzada que favorezcan enfoques plurales, interculturales y emocionalmente resonantes.

Cabe destacar que, en comparación con experiencias formativas en las que no se ha integrado la inteligencia artificial o donde dicha integración ha resultado fallida, por falta de acompañamiento docente o por un enfoque meramente instrumental, los resultados obtenidos en *Comunic@ndoUA* evidencian una mayor implicación del alumnado, una mejora sostenida en la calidad textual y una apropiación crítica de las herramientas. Estudios previos han documentado contextos donde el uso de IA generativa sin orientación pedagógica ha derivado en una pérdida de calidad discursiva y en un aumento de la dependencia tecnológica (McDonald et al., 2024), lo que refuerza la importancia de un diseño didáctico sólido como el aquí implementado.

Este estudio presenta limitaciones: se centra en un único grupo y en un contexto institucional concreto, lo que restringe la generalización de los resultados. Asimismo, los datos de encuesta se basan en autoinformes, lo que puede introducir sesgo de deseabilidad social. La duración de la experiencia (8 semanas) limita la observación de efectos a largo plazo.

Futuras investigaciones podrían explorar la replicación del modelo en otras universidades y disciplinas, ampliar la duración del proyecto y aplicar métricas longitudinales para evaluar la evolución de competencias críticas y creativas. También sería pertinente incorporar análisis comparativos entre grupos con y sin mediación docente intensiva.

La IA puede ser una aliada poderosa de la innovación educativa si se inserta en un marco didáctico riguroso que valore tanto la eficacia técnica como el pensamiento autónomo, crítico y la responsabilidad del estudiantado. *Comunic@ndoUA* demuestra que una integración crítica, contextualizada y pedagógicamente fundamentada es posible y no debe ser un atajo que sustituya la reflexión personal. De este modo, no solo se mejora la calidad del producto comunicativo, ya que esta experiencia

contribuye a perfilar un modelo replicable para otros entornos educativos que aspiran a formar profesionales capaces de comprender, integrar y cuestionar las tecnologías emergentes en un ecosistema comunicativo cada vez más complejo y en constante transformación.

5. REFERENCIAS

- Angrosino, M. (2007). Doing ethnographic and observational research. Sage.
- Cebrián Cifuentes, S. (2024). Revisión sistemática sobre el uso de la inteligencia artificial en la educación superior. *Revista Crónica*, 1(2), 45–60. https://revistacronica.es/index.php/revistacronica/article/view/156
- Chan, C. K. Y., & Colloton, T. (2024). *Generative AI in higher education: The ChatGPT effect*. Routledge.
- Creswell, J. W., & Plano Clark, V. L. (2018). *Designing and conducting mixed methods research* (3rd ed.). Sage.
- Crompton, H. & Burke, D. (2023). Artificial intelligence in higher education: The state of the field. *International Journal of Educational Technology in Higher Education, 20*(1), 22. https://doi.org/10.1186/s41239-023-00392-8
- Diakopoulos, N. (2019). Automating the news: How algorithms are rewriting the media. Harvard University Press.
- Gómez-Diago, G. (2022). Perspectivas para abordar la inteligencia artificial en la enseñanza de periodismo: Una revisión de experiencias investigadoras y docentes. *Revista Latina de Comunicación Social*, 80, 29–46. https://doi.org/10.4185/RLCS-2022-1542.
- Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. *Qualitative Health Research*, 15(9), 1277–1288.
- Kuckartz, U. (2014). *Qualitative text analysis: A guide to methods, practice & using software*. Sage. Mayoral Sánchez, J., Parratt Fernández, S. & Mera Fernández, M. (2023). Uso periodístico de la inteligencia artificial en medios de comunicación españoles: Mapa actual y perspectivas para un futuro inmediato. *Estudios sobre el Mensaje Periodístico*, *29*(1), 13–31. https://doi.org/10.5209/esmp.89193
- McDonald, N., Johri, A., Ali, A. & Hingle, A. (2024). Generative artificial intelligence in higher education: Evidence from an analysis of institutional policies and guidelines. *arXiv Preprint*, arXiv:2402.01659. https://arxiv.org/abs/2402.01659
- Montal, T. & Reich, Z. (2017). I, robot. You, journalist. Who is the author? *Digital Journalism*, *5*(7), 829–849. https://doi.org/10.1080/21670811.2016.1209083
- Quiroz Martínez, M. R. (2025). Inteligencia artificial generativa (IA Gen) en la transformación digital de la educación superior: Una revisión sistemática de literatura. *Ciencia Latina Revista Científica Multidisciplinar*, *9*(2), 767–784.
- Roger Monzó, V., Cabrera García-Ochoa, Y. & Mestre Pérez, R. (2023). Perspectivas emergentes de los medios españoles sobre la IA en la educación superior. En A. Martos Martínez et al. (Eds.), *Innovación docente e investigación en educación: nuevas tendencias para el cambio en la enseñanza superior* (pp. 437–448). Dykinson.

9. Las píldoras formativas elaboradas por el alumnado del Grado en Relaciones Internacionales como metodología docente en las asignaturas de Derecho Internacional Público y Organizaciones Internacionales

Marroquín García, Shaily Stefanny¹; Ferrer Lloret, Jaume¹; Guardiola Lohmüller, Ana Victoria¹; Moya Fuentes, María del Mar¹; Pérez Rivas, Natalia²; Requena Casanova, Millán¹; Soler García, Carolina¹; Urbaneja Cillán, Jorge¹; Vazquez-Portomeñe Seijas, Fernando²

¹Universidad de Alicante; ²Universidad de Santiago de Compostela

RESUMEN

Las píldoras formativas son contenidos multimedia de corta duración donde se exponen los contenidos esenciales de un tema o se sintetiza un concepto teórico-práctico. Su formato convencional es el diseño y realización de las píldoras por el profesorado. Nuestra propuesta traslada al alumnado el proceso de elaboración de dicha píldora, situándolo en el papel protagonista de su propio aprendizaje. Se trata de una metodología docente que favorece el aprendizaje activo del alumnado, lo que constituye un objetivo del Espacio Europeo de Educación Superior. El presente trabajo tiene como propósito exponer la metodología y los resultados obtenidos con la implementación de esta acción educativa en el Grado de Relaciones Internacionales de la Universidad de Alicante, en las asignaturas de Derecho Internacional Público y Organizaciones Internacionales. Los resultados alcanzados demuestran que la utilidad de este recurso docente es doble. Por un lado, favorece el desarrollo por el estudiantado de competencias necesarias para su futuro desempeño profesional, tales como la creación de contenido digital, la investigación jurídica, la capacidad de síntesis y la oratoria. Por otro lado, constituye una herramienta que complementa y refuerza las clases teóricas, facilitando el seguimiento de las asignaturas y proporcionando mejores resultados académicos.

PALABRAS CLAVE: píldoras formativas, TICs, alumnado, ciencias jurídicas, competencias profesionales.

1. INTRODUCCIÓN

La instauración del Espacio Europeo de Educación Superior (EEES) ha exigido un cambio en el modelo educativo de las universidades españolas y en los propios objetivos del aprendizaje. De manera que el objetivo predominante deja de ser la adquisición de conocimientos exclusivamente teóricos, para centrarse en la adquisición por el alumnado de competencias y habilidades profesionales (Bellido Penadés, 2014; García Magna & Becerra Muñoz, 2011). Así, el papel de actores principales que venía desempeñando el profesorado pasa a recaer en el alumnado, que debe adoptar un papel más activo en su proceso de enseñanza-aprendizaje (Fínez Silva et al., 2021).

Por otro lado, en la era digital en la que nos encontramos, las competencias digitales son cada vez más demandadas en el ejercicio profesional. Estas competencias engloban tanto el manejo de las Tecnologías de la Información y la Comunicación (TICs), como la creación de contenidos digitales (Azuara Guillén et al., 2017).

En este contexto, las píldoras formativas representan una de las metodologías de enseñanza-aprendizaje que ha registrado un crecimiento más significativo en los últimos años, particularmente desde 2017 (Urchaga Litago et al., 2022). Se trata de contenidos multimedia de corta duración en los que se expone lo esencial de un tema o se concentra un concepto teórico/práctico (Lozano et al., 2023). Su objetivo es enseñar y reforzar contenidos concretos, captando la atención de los estudiantes a través de una exposición dinámica e interactiva (Fínez Silva et al., 2021).

Por ello, constituyen un recurso atractivo e innovador que favorece la motivación del estudiantado, habituado al formato online (Moran Astorga et al., 2022). En este sentido, el uso de medios audiovisuales como metodología docente ha demostrado mejorar los procesos de enseñanza y aprendizaje, ya que el alumnado muestra una mayor implicación en su formación académica (Posligua Anchundia & Lubis Zambrano, 2019).

La implementación de píldoras formativas en las universidades españolas ha sido ampliamente experimentada, sin embargo, su uso convencional es la elaboración de estos contenidos multimedia por el profesorado. La presente acción educativa parte de situar al alumnado como protagonista del soporte audiovisual. Las pocas universidades españolas que han implementado este recurso docente, trasladando al alumnado el proceso de elaboración de las píldoras formativas, proporcionan datos que demuestran mejores resultados académicos en el alumnado (Guillén et al., 2017; Urchaga Litago et al., 2022; Lozano et al., 2023). Aun así, este método de aprendizaje no ha sido especialmente aprovechado en la Facultad de Derecho de la Universidad de Alicante, pese a las indudables ventajas que presenta.

El objetivo principal del presente trabajo es compartir y analizar los resultados obtenidos con la implementación del uso de píldoras formativas elaboradas por el alumnado del Grado en Relaciones Internacionales, como metodología docente en las asignaturas de Derecho Internacional Público y Organizaciones Internacionales, impartidas desde el Área de Derecho Internacional Público y Relaciones Internacionales de la Universidad de Alicante. En primer lugar, se pretende comprobar si esta herramienta facilita el aprendizaje y seguimiento de estas asignaturas de ciencias jurídicas. En segundo lugar, se busca evaluar si contribuye al desarrollo de competencias y habilidades necesarias para el posterior ejercicio profesional del alumnado.

Las conclusiones de este trabajo permitirán valorar la viabilidad de que el área de Derecho Internacional Público y Relaciones Internacionales de la Universidad de Alicante implante esta herramienta progresivamente en las distintas asignaturas que se imparten en el seno de la misma. Y, a largo plazo, la posibilidad de desarrollar esta actividad de forma conjunta con otros Departamentos de la Facultad de Derecho, al punto de crear un repositorio conjunto con píldoras de todas las asignaturas.

2. MÉTODO

2.1. Descripción del contexto y de los participantes

La presente acción educativa se ha desarrollado en el Grado de Relaciones Internacionales, en las asignaturas de Derecho Internacional Público y Organizaciones Internacionales. Durante el curso académico 2022-2023, se instauró en la asignatura de Organizaciones Internacionales y en el curso académico 2023-2024 se mantuvo en dicha asignatura y se implementó en la asignatura de Derecho Internacional Público.

La asignatura de Derecho Internacional Público es una asignatura básica de 6 ECTS que se imparte en el primer cuatrimestre del segundo curso de la titulación. En el curso académico 2023-2024, contó

con 60 alumnos/as matriculados/as. Por su parte, la asignatura de Organizaciones Internacionales es una asignatura obligatoria de 6 ECTS que se imparte en el segundo cuatrimestre del segundo curso de la titulación. En el curso académico 2022-2023, el número de alumnos/as matriculados/as fue de 60, y en el curso 2023-2024 fue de 65.

El desarrollo de estas asignaturas de ciencias jurídicas en el Grado de Relaciones Internacionales presenta la dificultad de que el alumnado no dispone de una formación jurídica integral. Además, ambas asignaturas se imparten en un curso muy inicial de la titulación. Por ello, uno de los objetivos de esta acción educativa es facilitar la comprensión de contenidos jurídicos y servir de herramienta para el seguimiento y refuerzo de dichas asignaturas.

A pesar de que esta experiencia docente se ha desarrollado exclusivamente en el Grado de Relaciones Internacionales de la Universidad de Alicante, la metodología y los resultados obtenidos en el marco de esta experiencia pueden ser extrapolables a otros grados y universidades.

2.2. Instrumento: las píldoras formativas creadas por el alumnado

La creación de píldoras formativas por el alumnado es un instrumento de gran utilidad, ya que fomenta el desarrollo de competencias profesionales y facilita el aprendizaje de conocimientos, en la medida en que el alumno/a debe resumirlos y entenderlos antes de proceder a exponerlos en el soporte audiovisual. Asimismo, favorece el manejo de herramientas tecnológicas frecuentemente requeridas en el entorno laboral (Urchaga Litago et al., 2022).

Con el objetivo de promover el desarrollo de estas competencias digitales en el alumnado, junto a otras específicas de las ciencias jurídicas, como la investigación y la oratoria, se diseñó esta metodología docente. Esta consiste en la elaboración, por parte del alumnado, de un vídeo con una duración entre 3 y 5 minutos, en el cual trabajan un tema propuesto por el profesorado de las asignaturas mencionadas anteriormente. Posteriormente, los vídeos se suben a una plataforma online para que los estudiantes puedan acceder a ellos cuando lo deseen.

Con carácter previo a la elaboración del vídeo o píldora formativa por el alumnado, se llevó a cabo una sesión formativa en aras de dotar al estudiantado de la información y herramientas necesarias para la realización de la misma. Por un lado, se les informo sobre distintas fuentes que podían consultar para la investigación sobre los temas asignados: bibliografía recomendada, páginas webs oficiales y jurisprudencia relevante. Conjuntamente, se les indico la importancia de seleccionar y sintetizar correctamente la información obtenida con el fin de ajustar la píldora a la duración máxima permitida, sin dejar de mencionar el contenido esencial del tema a tratar. Asimismo, pese a que los alumnos tenían total libertad en la grabación y edición de la píldora, se les informó sobre algunos programas y aplicaciones recomendadas a tal efecto, pensando en aquellos estudiantes que carecían de conocimientos en la creación de contenido audiovisual.

En concreto, se les aconsejó la utilización del programa *ScreenPal* por ser un editor muy completo para crear tutoriales de tipo screencast (grabaciones de pantalla) en poco tiempo. Además, tiene una versión gratuita muy fácil de usar que permite grabar al mismo tiempo la pantalla y la cámara que esté conectada al equipo, en forma conjunta o por separado. De igual forma, se les informó sobre i*Movie*, software de edición de vídeos disponible solo para Mac y sobre *Shotcut*, disponible en versión gratuita para Windows.

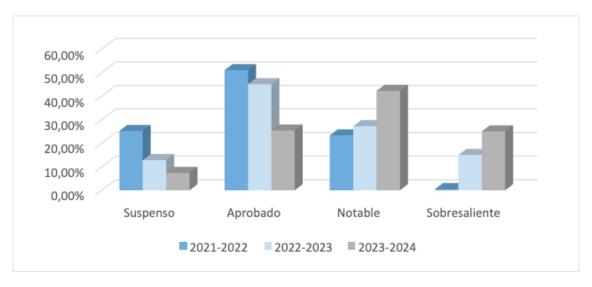
2.3. Procedimiento

El punto de partida consistió en la formación de grupos de 5 personas entre el alumnado que manifestó su interés en participar en el desarrollo de la acción educativa, ya que se diseñó como una actividad voluntaria. Posteriormente, se procedió a asignar a cada grupo un tema o apartado concreto de los contenidos de las asignaturas que debían abordar en sus píldoras formativas. Los temas seleccionados constituyen contenidos básicos que todo el alumnado debe conocer para superar las asignaturas. A modo de ejemplo, en la asignatura de Derecho Internacional Público, se asignaron temas tales como los elementos constitutivos del Estado, los tratados internacionales y demás fuentes del Derecho Internacional, la responsabilidad internacional del Estado, los medios de arreglo pacífico de las controversias, los espacios marinos y los espacios de interés internacional, entre otros. En relación a la asignatura de Organizaciones Internacionales los temas asignados se referían a los caracteres que definen las Organizaciones Internacionales, la clasificación de las mismas, las manifestaciones de la personalidad jurídica internacional, los tipos de órganos de las Organizaciones o aspectos concretos de Organizaciones Internacionales de gran importancia, por ejemplo, de Naciones Unidas o del Consejo de Europa.

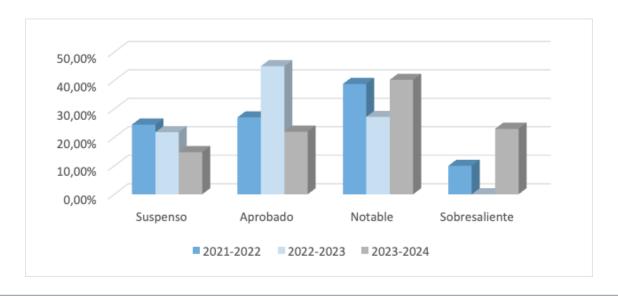
El siguiente paso fue la elaboración de las píldoras formativas por el alumnado que, como ya se mencionó, tenían libertad para su grabación y edición. Tras la recepción de los vídeos por el docente que impartió cada asignatura, los profesores miembros de la red que tenían asignada esta labor, procedieron al visionado de cada una de las píldoras para comprobar la veracidad de la información y puntuar cada vídeo.

A pesar de tratarse de una actividad de carácter voluntario, el alumnado tenía la posibilidad de obtener hasta 2 puntos en la nota de la evaluación continua. En este sentido, tanto en la asignatura de Derecho Internacional Público como en la asignatura de Organizaciones Internacionales la evaluación continua consta de un máximo de 5 puntos, siendo necesario obtener un mínimo de 2 puntos para superarla y poder promediar con el examen final. Los criterios tenidos en cuenta a la hora de puntuar cada vídeo fueron los siguientes: la adecuación a la duración máxima permitida (5 minutos), la calidad del contenido del vídeo, la claridad de las ideas, el lenguaje utilizado y la creatividad, entre otros.

Finalmente, los vídeos fueron subidos a *Moodle UA*, tras recabar previamente el consentimiento del alumnado, quienes firmaron un formulario facilitado por la delegación de protección de datos de la UA, donde se les indicaba claramente con qué fin se grababa el vídeo, donde iba a publicarse, y que ninguno podía hacer un uso indebido del mismo.


Las píldoras formativas estuvieron disponibles para el alumnado durante el desarrollo de las asignaturas, permitiéndoles acceder a ellas desde cualquier lugar con conexión a internet. De este modo, constituyeron una herramienta adicional para el seguimiento y repaso de ambas asignaturas, ya que podían ser visualizadas siempre que los estudiantes lo necesitaran.

3. RESULTADOS


Los datos que a continuación se detallan se han extraído de varias fuentes. En primer lugar, de la propia puesta en marcha de la experiencia docente después de analizar el número de estudiantes participantes y las notas obtenidas por el alumnado. Así, en relación a la participación, podemos decir que la actividad ha tenido una gran acogida pese a su carácter voluntario. El primer año (2022-2023) en la asignatura de Organizaciones Internacionales, de los 55 alumnos que siguieron la evaluación continua, participaron 50 alumnos, es decir, el 90%. En el segundo año (2023-2024), en el primer

cuatrimestre en Derecho Internacional Público, de 57 alumnos que siguieron la evaluación continua participaron 49, un 85%. En el segundo cuatrimestre en Organizaciones Internacionales, como ya conocían la dinámica, de los 57 alumnos participaron 55, esto es, un 96% del alumnado.

Respecto al rendimiento académico los resultados han sido muy positivos. En ambas asignaturas se llevó a cabo una comparativa entre los cursos 2021-2022, 2022-2023 y 2023-2024. Durante los tres años las asignaturas fueron impartidas por el mismo profesorado y se siguió el mismo sistema de evaluación. Se descartaron los cursos 2019-2020 y 2020-2021 ya que debido a la pandemia por COVID-19 el desarrollo de la docencia y el método de evaluación fue muy diferente a los demás cursos académicos, para así evitar sesgos derivados de esta situación excepcional. Como se puede comprobar en las siguientes gráficas, la realización de la dinámica proporciona datos que acreditan un mayor número de aprobados y mejores calificaciones.

Gráfico 1. Calificaciones obtenidas en la asignatura de Organizaciones Internacionales antes (curso 2021-2022) y después (cursos 2022-2023 y 2023-2024) de implementar la acción educativa.

Gráfico 2. Calificaciones obtenidas en la asignatura de Derecho Internacional Público antes (cursos 2021-2022 y 2022-2023) y después (curso 2023-2024) de implementar la acción educativa.

Como segunda fuente, se elaboró una encuesta sencilla a través de *Google Forms* para conocer la opinión del alumnado en relación con la actividad. En la encuesta se plantearon cuatro cuestiones. En primer lugar, se les pidió a los estudiantes que puntuarán dentro de una escala del 1 al 5 su grado de satisfacción con la actividad donde 1 es nada satisfactorio y 5 muy satisfactorio. De los 112 participantes, el 91,96% (N:101) calificó su grado de satisfacción con la actividad como "muy satisfactorio" otorgando una puntuación media de 4.5 sobre 5.

En segundo lugar, se les pidió que contestaran sí o no a la pregunta ¿Ha utilizado las píldoras formativas como materiales complementarios de refuerzo para el estudio de la asignatura? El 84,82% (N:95) de los estudiantes encuestados afirmó haber utilizado las píldoras educativas como material de refuerzo para el estudio, lo que sugiere que la actividad fue efectiva en cuanto a la generación de material útil para los estudiantes y como una herramienta que facilita al alumnado el seguimiento de la asignatura.

En tercer lugar, a quienes contestaron afirmativamente a la respuesta anterior se les pregunto si consideraban que la visualización de los vídeos les había ayudado en la asimilación de contenidos teórico jurídicos, debiendo dar una puntuación de 1 a 5, donde 1 es nada y 5 de forma muy notable. El 45,53% (N:51) otorgaron una puntuación de 5 puntos, seguida de un 31,25% (N:35) de alumnos que puntuaron con 4 puntos, y 9,47% (N:9) que puntuaron con un 3.

Por último, se les pidió que respondieran sí o no a la pregunta: ¿Considera que la actividad de creación de píldoras formativas le ha permitido adquirir competencias profesionales?, seguida de una pregunta abierta sobre ¿cuáles? El 95,54% (N:107) de los alumnos/as respondieron afirmativamente y las respuestas más repetidas fueron: las competencias digitales, la capacidad de síntesis y presentación de la información y la expresión oral.

Finalmente, se creó en *Moodle UA* un foro de discusión donde el alumnado pudo ir planteando durante todo el desarrollo de la actividad, las dudas, obstáculos con los que se fueron encontrando y propuestas de mejora. La duda más planteada inicialmente era en relación a las aplicaciones o programas para elaborar el vídeo, ya que la mayoría de los alumnos carecían de competencias en la creación de contenidos digitales. Una de las dificultades más repetidas fue precisamente la falta de experiencia previa en la edición del vídeo y, por tanto, la necesidad de invertir tiempo en aprender cómo se hace y edita un vídeo. Sin embargo, los alumnos analizaron este aspecto como positivo al terminar la actividad ya que gracias a ella adquirieron conocimientos en este ámbito. Otra de las dificultades manifestada fue la duración del vídeo, los alumnos solicitaron ampliar la duración afirmando que no era suficiente 5 minutos para exponer el tema asignado. No obstante, desde el momento en que se diseñó la actividad se pensó de esta forma para promover la capacidad de síntesis y de exposición clara por los estudiantes. Finalmente, el alumnado valoró positivamente el poder disponer de los contenidos audiovisuales, manifestando la ventaja que supone poder visualizarlos siempre que lo consideren necesario.

4. DISCUSIÓN Y CONCLUSIONES

A la luz de los resultados obtenidos se puede afirmar que el uso de píldoras formativas elaboradas por el alumnado es un recurso didáctico que ofrece grandes ventajas, aunque su aplicación práctica en las universidades españolas ha sido muy reducida. Si bien el empleo de píldoras formativas elaboradas por el profesorado ya ofrece grandes beneficios en la docencia universitaria, trasladar el proceso de elaboración de la mismas al alumnado es una práctica aún más enriquecedora. Se ha demostrado que

con la realización de las píldoras el alumnado desarrolla competencias transversales y profesionales (Pérez Rivas, 2019), que no se adquieren con las clases magistrales. Concretamente, los resultados de la encuesta realizada por el alumnado demuestran que estos consideran que las competencias más desarrolladas a través de esta experiencia docente son la capacidad de síntesis y la oratoria jurídica. Junto a las competencias digitales tan demandadas en la sociedad contemporánea y en el ejercicio profesional.

Asimismo, los resultados indican que las píldoras formativas son una herramienta eficaz para la asimilación de contenidos jurídicos, ya que, al crear las píldoras, los estudiantes deben investigar, comprender y sintetizar la información. Este proceso no solo favorece el desarrollo de competencias y habilidades, como se ha mencionado, sino que también facilita una mayor retención del conocimiento y promueve un aprendizaje más profundo y activo.

Además, el desarrollo de esta acción educativa mostró un incremento significativo de la motivación del alumnado al acercarlos a una realidad social con la que están muy familiarizados como es el consumo de recursos audiovisuales. Esto se constató con la gran acogida que tuvo por el alumnado a pesar de ser una actividad voluntaria.

Las píldoras formativas también se presentan como un recurso adicional para el seguimiento y repaso de las asignaturas. Al respecto, el 84,82% (N:95) de los estudiantes encuestados afirmaron haber utilizado las píldoras educativas como material de refuerzo para el estudio de las asignaturas y la mayoría de ellos coincidieron en la ventaja que supone poder visualizarlas de forma repetida. En efecto, la posibilidad de que el alumnado pueda reproducir el contenido digital tantas veces como sea necesario hasta entenderlo e interiorizarlo, presenta una clara ventaja frente a las clases presenciales (Sande Mayo, 2014).

Finalmente, al igual que en las pocas universidades que han implementado el uso de píldoras formativas elaboradas por el alumnado, los resultados obtenidos demuestran que su implementación proporciona mejores resultados académicos (Guillén et al., 2017; Urchaga Litago et al., 2022; Lozano et al., 2023). Se constató un descenso en la tasa de suspensos y una mejora considerable en las calificaciones. Específicamente, se observó un aumento en el porcentaje de estudiantes que obtuvieron una calificación de sobresaliente.

En cuanto a los inconvenientes o aspectos a tener en cuenta hay que destacar, en primer lugar, el hecho de que el alumnado debe invertir tiempo en formarse en la grabación y edición de contenido audiovisual. Sin embargo, a largo plazo esto se transforma en una fortaleza, así lo ha reconocido el propio alumnado, ya que se convierte en una habilidad adquirida para el posterior desempeño profesional. En segundo lugar, se trata de un recurso que presenta limitaciones, en la medida en que sirve como herramienta complementaria, pero en ningún caso sustituye las clases teóricas. De hecho, algunos contenidos debido a su complejidad requieren necesariamente ser explicados por el profesorado, por lo que no todos los contenidos de las asignaturas son aptos para el desarrollo de esta actividad. Por último, aunque los estudiantes consideraron el tiempo de duración del vídeo insuficiente, la experiencia se diseñó de esta manera para que el alumnado aprenda a extraer los conceptos más importantes de forma clara y concisa. De todos modos, sí que es muy importante de cara a la asignación de temas, que estos estén perfectamente delimitados para que los estudiantes no tengan ninguna dificultad al momento de abordarlos.

A modo de conclusión, la experiencia docente descrita, así como los resultados obtenidos a partir del desarrollo de la misma, demuestran que el uso de píldoras formativas elaboradas por el alumna-

do favorece el desarrollo de competencias profesionales y constituye una herramienta que facilita la asimilación de contenidos jurídicos. Además, sirve como material complementario para la preparación y repaso de las asignaturas de ciencias jurídicas proporcionando mejores resultados académicos. También despierta la motivación del alumnado y contribuye a que desempeñe un papel protagonista en su aprendizaje. Los resultados arrojados aconsejan la implementación de esta experiencia docente en las distintas titulaciones y asignaturas en las que se imparte docencia desde el Área de Derecho Internacional Público y Relaciones Internacionales de la Universidad de Alicante.

5. REFERENCIAS

- Azuara Guillén, G., Fernández Iglesias, D., López Torres, A.M., Salinas Baldellou, A.M., Aguilar Martín, M.C., Salazar Riaño, J.L., Fernández-Navajas, J., Cacheda Seijo, F., Novoa de Manuel, F.J, & Carneiro Díaz, V.M. (2017). Vídeos cortos realizados por los alumnos como recurso docente. Diferentes enfoques. En J. Lloret Mauri & V. Casares-Giner (Eds.), *Libro de actas XIII Jornadas de Ingeniería telemática* (pp. 348-355). Editorial Universitat Politècnica de València. https://doi.org/10.4995/JITEL2017.2017.6566
- Bellido Penadés, R. (2014). La asistencia a juicios y su simulación como nuevos métodos de aprendizaje del Derecho procesal. *Reduca (Derecho)*. *Serie Derecho Procesal*. *5 (1)*, 256-272.
- http://revistareduca.es/index.php/reduca-derecho/article/download/1850/1867
- Fínez Silva, M.J., Morán Astorga, M.G. & Vallejo Pérez, G. (2021). Las píldoras educativas: su valoración por los estudiantes de grado de la universidad de León. *Revista INFAD de Psicología. International Journal of Developmental and Educational Psychology*, 1(2), 293–300. https://doi.org/10.17060/ijodaep.2021.n2.v1.2183
- García Magna, D., & Becerra Muñoz, J. (2012). La visita a prisión como metodología innovadora en derecho penal. *Vivat Academia*, (117E), 512-529. https://doi.org/10.15178/va.2011.117E.512-529
- Lozano, C., Andrade-Gómez, E., Ujué Moreno, M., Giménez-Luzuriaga, M., Lozano-Ochoa, C., Mirpuri, E., Amaia Ramírez, C., Alberto Sainz, P., Sapiña-Beltrán, E., & Pérez-Matute, P. (2023). Píldoras formativas en la docencia universitaria de ciencias de la salud: aprendizaje significativo y profesionalización. En A. Diez Gómez del Casal (Ed.), *Propuestas de innovación para el desarrollo en contextos educativas* (pp. 103-114). Universidad de la Rioja. https://portalcientifico.unav.edu/documentos/648ca0d041be6e64a7d1c3f0
- Morán Astorga, M.C., Fínez Silva, M.J., & Urchaga Litago, D. (2022). Innovación docente en el EEES: las píldoras educativas. *Revista INFAD de Psicología. International Journal of Developmental and Educational Psychology*, 1(1), 505–511. https://doi.org/10.17060/ijodaep.2022.n1.v1.2408
- Pérez Rivas, N. (2019). 9. El vídeo docente como herramienta de autoaprendizaje en el ámbito del derecho penal. En M. Otero Crespo, C. Alonso Salgado, A. Valiño Ces, & A. Rodríguez Álvarez (Eds.), *Investigación y docencia en Derecho: Nuevas perspectivas* (pp. 51-55). Colex. https://investigacion.usc.gal/documentos/5e32c19629995254e2180f65
- Posligua, R. & Zambrano, L. (2020). El empleo del YouTube como herramienta de aprendizaje. *Rehuso*, 5(1), 11-20. https://doi.org/10.5281/zenodo.6795941
- Sande Mayo, M.J. (2014). Y una medicina para el conocimiento las "píldoras educativas" como recurso en la docencia del Derecho procesal. *Reduca (Derecho), Serie Derecho Procesal*, 5 (1), 388-398. http://www.revistareduca.es/index.php/reduca-derecho/article/viewFile/1860/1877

Urchaga Litago, J.D., Fínez Silva, M.J., & Morán Astorga, M.C. (2022). Innovación educativa: revisión de experiencias con píldoras educativas o formativas. *Revista INFAD de Psicología. International Journal of Developmental and Educational Psychology*, *2*(1), 109–116. https://doi.org/10.17060/ijodaep.2022.n1.v2.2327

6. REFERENCIAS A PROYECTOS

El presente trabajo ha contado con una ayuda del Programa de Redes de investigación en docencia universitaria del Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2022-2024). Ref.: 5755.

10. Pacientes Virtuales con Inteligencia Artificial en Psicopatología: Una Propuesta Innovadora para la Formación Clínica Universitaria

Morales, Alexandra¹; Hervás, Damián¹; Fernández, César², Fernández-Martínez, Iván¹; Gonzálvez, María T.^{1,3}; Vicente, M. Asunción²

¹Centro de Investigación en Infancia y Adolescencia. Universidad Miguel Hernández de Elche, ²Departamento de Psicología de la Salud. Universidad Miguel Hernández de Elche, ³Universidad Internacional de Valencia

RESUMEN

El uso de pacientes virtuales (PV) basados en inteligencia artificial generativa (IAG) ofrece nuevas oportunidades para la formación clínica en Psicología. Este estudio describe una experiencia de innovación docente desarrollada en una universidad pública española, en la asignatura de Psicopatología del Grado en Psicología, cuyo objetivo fue evaluar el impacto de los PV generados con ChatGPT en cuatro dimensiones clave: mejora en el aprendizaje activo (identificación de síntomas y diagnóstico diferencial), satisfacción y motivación con la herramienta, grado de participación durante las sesiones y valoración global de la experiencia. Participaron 100 estudiantes de segundo curso que interactuaron individualmente con un PV configurado para representar un caso clínico de ansiedad. Los resultados, recogidos mediante un cuestionario ad hoc con ítems cuantitativos y cualitativos, indicaron que el 94% mejoró su capacidad para identificar síntomas y el 86% para diferenciar diagnósticos. El 92% se mostró satisfecho con la experiencia y el 95% se sintió más motivado que con casos escritos. Además, el 84% utilizó la herramienta en todas las sesiones y tres de cada cuatro estudiantes interactuaron entre 15 y 30 minutos por sesión. El 93% valoró la herramienta como intuitiva y el 100% recomendaría su uso en otras asignaturas clínicas. Se sugieren mejoras en la coherencia de respuestas y el diseño de casos más complejos.

PALABRAS CLAVE: simulación educativa, competencias profesionales, evaluación formativa, psicología clínica, aprendizaje experiencial.

1. INTRODUCCIÓN

La formación de competencias clínicas en el Grado en Psicología, particularmente en asignaturas como Psicopatología, representa un reto en la universidad. Se requiere la integración de conocimientos teóricos (p.ej. conocer los criterios diagnósticos de un trastorno concreto) y habilidades prácticas (p.ej. entrevista clínica). La adquisición de habilidades como la identificación de síntomas, la formulación de diagnósticos diferenciales, el razonamiento clínico y la comunicación empática requiere más que el dominio de conocimientos teóricos. Estos aprendizajes están intrínsecamente ligados a la experiencia práctica, a la toma de decisiones en contextos inciertos y al contacto sostenido con situaciones clínicas complejas. No obstante, las oportunidades para desarrollar estas competencias suelen ser limitadas en la enseñanza tradicional (p.ej. casos clínicos en papel), lo que repercute en la preparación y confianza de los estudiantes.

La enseñanza tradicional cuenta con varias limitaciones importantes. El uso de casos clínicos en papel, aunque valioso, no ofrece la dinámica necesaria para que los estudiantes desarrollen habilidades como la empatía o la capacidad de tomar decisiones en tiempo real (Tay et al., 2025). Además, la exposición a situaciones clínicas reales puede ser difícil de proporcionar en etapas tempranas de la formación, lo que limita las oportunidades para los estudiantes de practicar en un entorno seguro y controlado.

En este contexto, los avances en tecnologías digitales y, en particular, en IAG o IA conversacional, han abierto nuevas posibilidades para la formación clínica (García-Torres et al., 2024; Vicente-Ripoll et al., 2024). La implementación de pacientes virtuales (PV), especialmente aquellos basados en modelos de lenguaje como ChatGPT, permite generar simulaciones interactivas y realistas de entrevistas clínicas. Un PV con IAG es una simulación interactiva que reproduce el lenguaje y comportamiento de un paciente real con fines educativos, permitiendo entrenar habilidades clínicas en un entorno seguro, flexible y repetible. Estos sistemas se caracterizan por su capacidad de responder de forma coherente, contextualizada y emocionalmente matizada a las preguntas del usuario. Además, favorecen el aprendizaje activo que estimula tanto la reflexión como la toma de decisiones.

Los PV han sido utilizados con éxito en múltiples disciplinas del ámbito sanitario. En medicina, se ha empleado como una estrategia eficaz para mejorar la recogida de datos clínicos, la exploración física simulada, la elaboración de hipótesis diagnósticas y la planificación terapéutica (Isaza-Restrepo et al., 2018). La incorporación de modelos de lenguaje generativos ha incrementado el realismo de las simulaciones y su potencial educativo, mejorando la precisión diagnóstica, la motivación del alumnado y la autorregulación del aprendizaje (Fatima et al., 2024; Yi & Kim, 2025).

En enfermería, los PV han mostrado beneficios similares, particularmente en el entrenamiento de la comunicación clínica, el juicio profesional y la toma de decisiones en situaciones críticas. El uso de ChatGPT en el aula fomenta la reflexión sobre el error y la autoevaluación, promoviendo un aprendizaje más profundo (Martín-Fernández, 2024). Estas simulaciones permiten abordar de manera estandarizada competencias como la planificación de la intervención y el establecimiento de alianzas terapéuticas (Yamada et al., 2025).

Además, se ha documentado el potencial de los PV para el entrenamiento en empatía clínica. Gilbert et al. (2024) observaron que los estudiantes que interactúan con PV pueden identificar emociones y ofrecer respuestas empáticas básicas. Sin embargo, las respuestas que implican una mayor sintonía emocional requieren un nivel más alto de experiencia. En una revisión sistemática, Yamada et al. (2025) concluyen que los PV constituyen un entorno accesible y estandarizado para introducir y practicar la empatía, con menor coste emocional que el trabajo con pacientes reales o estandarizados. Hay evidencia de que los entornos de simulación enriquecidos con expresiones verbales y no verbales generadas por IA pueden mejorar la percepción de autenticidad, el compromiso del estudiante y la calidad de la toma de decisiones clínicas (Borg et al., 2024). En el ámbito docente, estas herramientas permiten a los profesores diseñar escenarios específicos, adaptarlos a distintos niveles de competencia y hacer seguimiento del progreso del alumnado.

La aplicación de PV se ha desarrollado principalmente en el contexto de la medicina y otras profesiones sanitarias; sin embargo, en Psicología es todavía limitada. En Psicología se han empleado talleres de simulación clínica y role-playing (Sánchez-Cerezo et al., 2024). Estudios recientes han explorado el uso de ChatGPT como herramienta de apoyo diagnóstico en psicología clínica, con resultados alentadores. Benalcázar (2024) encontró que los profesionales de la salud mental consideraban útil su uso para complementar el juicio clínico y evitar errores comunes. Asimismo, se ha observado

que los estudiantes que practican con PV muestran mejoras en su capacidad para identificar síntomas, estructurar entrevistas diagnósticas y generar hipótesis clínicas fundadas (García-Torres et al., 2024).

En psicología, la evidencia sobre PV es prometedora pero aún incipiente. Una revisión de alcance (n = 9 estudios) reporta mejoras en habilidades, competencia clínica y conocimiento, con alta aceptación del alumnado (Imam Hossain et al., 2024). Sin embargo, la heterogeneidad de diseños, las muestras pequeñas y las intervenciones breves impiden conclusiones firmes y persisten retos técnicos (p. ej., respuestas inconsistentes, usabilidad) que limitan la inmersión. En consecuencia, los PV deben concebirse como complemento –no sustituto– de la docencia tradicional y destacan por integrar teoría y práctica en un entorno seguro, estandarizado y repetible: permiten afrontar escenarios complejos sin riesgo asistencial, con práctica repetida, retroalimentación inmediata y ajuste de dificultad, especialmente útiles en etapas formativas tempranas.

El objetivo de esta investigación fue evaluar la experiencia de uso de PV creados con ChatGPT como herramienta didáctica en estudiantes de segundo curso del Grado en Psicología de una universidad pública española. Específicamente, se plantea: (1) evaluar la experiencia de uso de PV para la mejora del aprendizaje activo: identificación y diagnóstico diferencial de trastornos psicológicos; (2) Conocer la satisfacción y motivación de los estudiantes con esta herramienta; (3) Analizar el grado de participación e interacción con los PV durante las sesiones clínicas; y (4) Evaluar la experiencia general con los PV de forma cualitativa, identificando fortalezas y áreas de mejora.

2. MÉTODO

2.1. Descripción del contexto y de los participantes

Este proyecto ha sido financiado por el Programa de Innovación Docente Universitaria PIEU-UMH 2024 de la Universidad Miguel Hernández de Elche (PIEU-B/2024/72). El estudio se llevó a cabo en el marco de la asignatura Psicopatología, perteneciente al segundo curso del Grado en Psicología de la Universidad Miguel Hernández de Elche, España. La asignatura se imparte durante el primer cuatrimestre y cuenta con una carga lectiva de 7,5 créditos ECTS. El enfoque docente combina clases teóricas magistrales con sesiones prácticas centradas en el análisis de casos clínicos.

Participaron en la experiencia docente 100 estudiantes (92% eran mujeres), con edades comprendidas entre los 18 y 59 años. La mayoría se encontraba en el intervalo de 18 a 24 años (88%), correspondiente a la edad habitual en los primeros cursos del Grado. El resto de los participantes se distribuía en rangos superiores: el 4% entre 25 y 30 años, el 5% entre 31 y 39 años, el 2% entre 40 y 49 años, y el 1% restante entre 50 y 59 años.

En cuanto a la asistencia a las sesiones prácticas de la asignatura Psicopatología, la distribución de frecuencias indicó un alto nivel de implicación por parte del estudiantado. La mayoría de los participantes (88%) informó haber asistido a la totalidad de las sesiones programadas (100%). Un 8% indicó que asistía al 90%, mientras que un 3% indicó que lo hacía al 80%. Solo un 1% manifestó haber asistido aproximadamente a la mitad de las sesiones prácticas.

En relación con la dedicación semanal aproximada a la asignatura, los datos obtenidos evidencian una distribución heterogénea en el tiempo que el estudiantado refiere invertir en el estudio y seguimiento de los contenidos de la asignatura. El grupo mayoritario indicó dedicar entre 4 y 6 horas semanales (35%), seguido por aquellos que señalaron una dedicación de 2 a 4 horas (30%). Un 18% informó un tiempo de dedicación reducido, situado entre 0 y 2 horas semanales, mientras que un 12% manifestó emplear entre 6 y 8 horas. Solo un 5% refirió una dedicación superior a las 8 horas semanales.

La alta tasa de asistencia y dedicación de los estudiantes refleja un nivel de compromiso que sugiere un interés intrínseco por las nuevas metodologías de aprendizaje. Este nivel de implicación es clave para el éxito de la implementación de PV en el aula, ya que garantiza que los estudiantes experimenten de manera significativa con las herramientas propuestas, maximizando así el aprendizaje activo.

2.2. Instrumentos

El instrumento principal de recogida de datos fue un cuestionario diseñado *ad hoc*, implementado a través de la plataforma *Google Forms*. Este cuestionario tuvo como objetivo valorar la experiencia del estudiantado con PV generados mediante IA en el contexto de las prácticas clínicas de Psicopatología. El instrumento combinaba formatos cerrados (preguntas de opción múltiple y escalas tipo Likert) y abiertos (respuestas cualitativas). Los estudiantes respondieron a la encuesta tras finalizar la asignatura. Todas las escalas tipo Likert fueron presentadas con un orden uniforme (de mayor a menor acuerdo) con el objetivo de garantizar la coherencia y la claridad en la interpretación de los resultados.

Se evaluaron datos sociodemográficos (sexo, rango de edad) y sobre el grado de participación en la asignatura Psicopatología (porcentaje de asistencia a las sesiones prácticas y horas aproximadas de dedicación a la asignatura en una semana). Se indagó sobre la percepción de mejora del aprendizaje activo mediante PV con una escala tipo Likert (p.ej. ¿Consideras que la interacción con los PV te ayudó a mejorar tu capacidad para identificar síntomas relevantes durante la entrevista clínica?). Se evaluó la satisfacción y motivación con el uso con PV, el grado de validación del uso de la IA como herramienta educativa para la práctica clínica (p.ej. ; Recomendarías el uso de PV basados en IA para otras asignaturas clínicas? Se exploró la frecuencia de interacción con el paciente virtual y la duración estimada de interacción en cada sesión (p.ej. ¿Cuánto tiempo, en promedio, dedicabas a interactuar con el paciente virtual en cada sesión?). Posteriormente, se incluyó ítems relativos a la percepción del nivel de dificultad de los casos clínicos y la valoración del realismo de las respuestas generadas por el paciente virtual. Finalmente, se formularon preguntas relativas a la satisfacción general con la experiencia, el interés en seguir utilizando herramientas similares en el futuro, así como dos preguntas abiertas que permitieron recoger información cualitativa sobre los aspectos más valorados y las sugerencias de mejora. El contenido del cuestionario fue revisado por el equipo docente para asegurar su validez de contenido y su adecuación al contexto.

2.3. Procedimiento

La participación en la actividad de innovación docente fue de carácter voluntario. A modo de incentivo, se ofreció la posibilidad de obtener hasta un punto adicional (1/10) en la calificación final de la asignatura, condicionado a que esta estuviera aprobada con una nota mínima de 5 sobre 10. Esta bonificación se concibió como una estrategia de evaluación formativa, orientada a fomentar la implicación activa de los estudiantes sin comprometer la equidad en la evaluación oficial.

Dos ingenieros informáticos crearon los PV y la interfaz, a partir de los casos clínicos elaborados por los profesores de la asignatura. Cada una de las prácticas versó sobre un grupo de problemas psicológicos: trastornos de ansiedad, trastornos del estado del ánimo, trastornos de la personalidad y psicóticos, trastornos de la conducta alimentaria, trastornos relacionados con el control de impulsos y adicciones y trastornos del sueño. Durante las seis sesiones prácticas, los estudiantes accedieron a los PV a través de un entorno de chat gestionado por el profesorado, basado en la tecnología ChatGPT.

Cada estudiante interactuó de forma individual con un PV previamente configurado para representar un caso clínico específico. Las sesiones, realizadas en el aula docente, tuvieron una duración de 2 horas y fueron supervisadas por los profesores de la asignatura.

Al inicio de cada sesión, se realizó un repaso del grupo de trastornos sobre el que versaba la práctica. Se les explicó los objetivos, el funcionamiento del entorno conversacional y las pautas para formular preguntas clínicas pertinentes. Durante la interacción, el alumnado debía recoger información relevante, identificar posibles síntomas y formular una hipótesis diagnóstica provisional. Al finalizar cada sesión práctica, se procedía a la resolución conjunta de los casos clínicos en formato grupal, donde el profesorado proporcionaba retroalimentación específica sobre los aspectos clave del caso, incluyendo fortalezas y áreas de mejora en la exploración clínica realizada.

Tras la discusión del caso, cada estudiante completaba un cuestionario online para resolver las actividades y valoraba su experiencia con los PV. La revisión de estas evaluaciones permitió al profesorado ofrecer feedback adicional e identificar patrones comunes en el razonamiento clínico del grupo. La actividad se integró como recurso complementario dentro del plan docente del curso 2024-25, en el marco del desarrollo progresivo de competencias clínicas. Tras finalizar la asignatura, los estudiantes respondieron a un cuestionario mediante *Google Forms* para evaluar su experiencia.

3. RESULTADOS

3.1. Mejora en el aprendizaje activo: identificación y diagnóstico diferencial

Como se muestra en la tabla 1, la mayoría del estudiantado percibió los PV como una herramienta útil para fortalecer su razonamiento clínico. En concreto, el 94% indicó que la interacción con el PV le ayudó notablemente a mejorar su capacidad para identificar síntomas relevantes durante la entrevista clínica. Tan solo un pequeño porcentaje (6%) señaló una mejora parcial, y ningún estudiante manifestó que la herramienta no le resultara útil en este sentido.

En lo relativo al diagnóstico diferencial, los datos fueron también positivos: el 86% afirmó que la simulación con el PV le permitió distinguir con mayor claridad entre diferentes posibilidades diagnósticas. El resto del alumnado (14%) indicó que esta contribución fue moderada, y nuevamente no se registraron valoraciones negativas.

Además, un 81% de los participantes consideró que las respuestas del PV resultaban realistas y contribuían a guiar su razonamiento clínico. Esto sugiere el potencial de este tipo de simulaciones para crear experiencias inmersivas y significativas.

Tabla 1. Mejora en el aprendizaje activo: Identificación y diagnóstico diferencial de trastornos psicológicos.

	N (%)
¿Consideras que la interacción con los pacientes virtuales (PV) te ayudó a mejorar tu capacidad para identificar síntomas relevantes durante la entrevista clínica?	
Mucho	43 (43)
Bastante	51 (51)
Algo	5 (5)
Poco	1 (1)
Nada	0 (0)

	N (%)
¿En qué medida la simulación con el PV te permitió diferenciar entre distintos diagnósticos posibles?	
Mucho	24 (24)
Bastante	62 (62)
Algo	14 (14)
Poco	0 (0)
Nada	(0)
¿Crees que las respuestas del PV reflejaban un comportamiento realista que facilitó tu razonamiento clínico?	
Totalmente de acuerdo	25 (25)
De acuerdo	56 (56)
Neutral	17 (17)
En desacuerdo	2 (2)
Totalmente en desacuerdo	0 (0)

3.2. Satisfacción y motivación con la herramienta

La satisfacción de los estudiantes con la experiencia fue muy elevada (véase Tabla 2). Un 92% del alumnado se mostró satisfecho o muy satisfecho con el uso de PV durante las prácticas, mientras que solo una minoría expresó valoraciones intermedias. Ningún participante se mostró abiertamente insatisfecho, lo que refuerza el impacto positivo de esta innovación docente.

La motivación de los estudiantes para interactuar con los PV fue alta. El 95% manifestó sentirse más motivado al trabajar con PV que con casos escritos tradicionales, y tres de cada cuatro estudiantes señalaron que esta motivación fue considerable. La interacción directa y dinámica con la herramienta pareció fomentar una implicación activa en las sesiones prácticas.

Tabla 2. Satisfacción y motivación con el uso de pacientes virtuales (PV) basados en ChatGPT.

	N(%)
¿Cómo calificarías tu nivel de satisfacción general con la experiencia de utilizar PV durante las prácticas?	
Muy insatisfecho	0 (0)
2	2 (2)
3	6 (6)
4	48 (48)
Muy satisfecho	44 (44)

	N (%)
¿Te sentiste más motivado/a para participar en las prácticas al interactuar con PV que con casos escritos?	
Sí, mucho	74 (74)
Sí, algo	21 (21)
Neutral	5 (5)
Poco	(0)
Nada	(0)

3.3. Valoración del uso de inteligencia artificial (IA) en el contexto clínico

La mayoría de los estudiantes consideraron que los PV podían complementar —e incluso mejorar— las simulaciones tradicionales con actores (Tabla 3). En concreto, el 86% apoyó esta afirmación total o parcialmente, mientras que solo un pequeño grupo adoptó una postura más neutral o escéptica. De manera unánime, todos los participantes recomendarían el uso de esta tecnología en otras asignaturas clínicas.

Tabla 3. Validación del uso de IA como herramienta educativa para la práctica clínica.

		N(%)
¿Crees que los PV creados con ChatGPT pueden complementar o mejorar las simu pacientes estandarizados (actores)?	laciones con	
Sí	, completamente	35 (35)
	Sí, en parte	51 (51)
	Neutral	11 (11)
	No mucho	3 (3)
	No en absoluto	0 (0)
¿Recomendarías el uso de PV basados en IA para otras asignaturas clínicas?		
	Sí	100 (100)
	No	0 (0)

3.4. Participación y uso durante las sesiones

La implicación en el uso de la herramienta durante las prácticas fue elevada, dado que fue la metodología de las sesiones prácticas (Tabla 4). El 84% de los participantes informó haber trabajado con PV en todas las sesiones, y otro 12% en la mayoría de las sesiones. El tiempo de dedicación también fue significativo: tres de cada cuatro estudiantes interactuaron entre 15 y 30 minutos por sesión, y uno de cada cinco dedicó incluso más de media hora. Por otro lado, la profundidad del trabajo clínico fue

notable. Más de la mitad del alumnado consultó al PV en más de cuatro ocasiones antes de formular un diagnóstico, lo que sugiere un enfoque reflexivo y detallado en la toma de decisiones. Además, el número de preguntas por caso fue elevado: casi dos tercios formularon entre cinco y diez preguntas, y más de un tercio superó esa cifra.

Tabla 4. Indicadores de logro durante las sesiones prácticas.

	N (%)
¿Con qué frecuencia utilizaste al paciente virtual para practicar tus habilidades clínicas durante las sesiones?	
En todas las sesiones	84 (84)
En la mayoría de las sesiones	12 (12
En algunas sesiones	4 (4)
En pocas sesiones	0 (0)
Nunca	0 (0)
¿Cuánto tiempo, en promedio, dedicabas a interactuar con el paciente virtual en cada sesión?	
Más de 30 minutos	20 (20
Entre 15 y 30 minutos	77 (77
Menos de 15 minutos	3 (3)
¿Cuántas veces consultaste al paciente virtual en un caso clínico antes de formular un diagnóstico?	
1-2 veces	12 (12
3-4 veces	32 (32
Más de 4 veces	56 (56
¿Cuántas preguntas le realizaste al paciente virtual por cada caso clínico en promedio?	
Menos de 5	2 (2)
Entre 5 y 10	61 (61
Más de 10	37 (37

3.5. Valoración global de la experiencia

La experiencia de interacción con el paciente virtual fue calificada, en general, como intuitiva y sencilla por el 93% del estudiantado. Solo un pequeño grupo se mostró neutral y no se registraron respuestas negativas.

Asimismo, un 91% afirmó que las respuestas del paciente virtual le ayudaron a identificar errores y mejorar su razonamiento clínico, lo que sugiere que la herramienta no solo motiva, sino que también favorece un aprendizaje autorregulado y consciente.

Por último, la comparación con los métodos tradicionales fue especialmente reveladora: el 95% del alumnado valoró la experiencia con PV como más interesante que las actividades basadas en casos escritos. La mayoría expresó que el interés fue "mucho mayor", lo que pone de manifiesto el potencial transformador de este tipo de simulaciones en el contexto universitario actual.

Tabla 5. Experiencia de los estudiantes.

	N (%)
¿Te resultó intuitivo y sencillo interactuar con el paciente virtual durante las actividades prácticas?	
Totalmente de acuerdo	51 (51)
De acuerdo	42 (42)
Neutral	3 (42)
En desacuerdo	0 (0)
Totalmente en desacuerdo	0 (0)
Omisiones	4 (4)
¿Las respuestas del paciente virtual fueron útiles para identificar errores y mejorar tu razonamiento clínico?	
Sí, mucho	55 (55)
Sí, algo	36 (36)
Neutral	5 (5)
Poco	0 (0)
Nada	0 (0)
Omisiones	4 (4)
¿Cómo calificarías tu interés en las prácticas con PV respecto a las actividades con métodos tradicionales (casos descritos en papel)?	
Mucho mayor	70 (70)
Algo mayor	25 (25)
Igual	1(1)
Algo menor	0 (0)
Mucho menor	0 (0)
Omisiones	4 (4)

3.6. Valoración cualitativa y propuestas de mejora

El análisis cualitativo de los comentarios abiertos permitió identificar tres categorías principales: (1) fortalezas percibidas (realismo, entorno seguro, motivación), (2) debilidades técnicas (repeticiones, conexión, coherencia de respuestas) y (3) sugerencias pedagógicas (incluir más comorbilidades,

práctica de síntesis). Esta categorización sistematiza las aportaciones del estudiantado y enriquece la interpretación de los resultados cualitativos.

Los estudiantes valoraron especialmente la posibilidad de simular entrevistas clínicas en un entorno seguro y realista. Esto favorece el desarrollo del razonamiento clínico y la práctica del diagnóstico diferencial. Destacaron que la interacción con PV permite formular preguntas propias, adaptar la entrevista según las respuestas recibidas y explorar diversas hipótesis diagnósticas en tiempo real. Esta dinámica activa y personalizada facilita la aplicación práctica de los contenidos teóricos, superando la rigidez de los casos escritos tradicionales. Además, el entorno simulado reduce la presión emocional de interactuar con pacientes reales, especialmente en temas sensibles, lo que contribuye a una mayor confianza en el manejo clínico. Los participantes también resaltaron el valor de recibir retroalimentación inmediata, compartir observaciones con compañeros y contrastar interpretaciones, lo cual enriquece el proceso formativo. En conjunto, los PV fueron percibidos como una herramienta eficaz para entrenar competencias fundamentales en psicología clínica, como el razonamiento diagnóstico, la toma de decisiones y la comunicación terapéutica.

La implementación de PV fue valorada positivamente por los estudiantes, no obstante, también identificaron áreas de mejora orientadas a incrementar la validez ecológica y la robustez técnica del recurso. Entre las principales sugerencias se incluyen: mejorar la coherencia y variabilidad de las respuestas (el PV no ofrece siempre la misma respuesta), evitar repeticiones, garantizar estabilidad en la conexión a internet, e incorporar elementos de realismo como lenguaje corporal y expresiones faciales. Asimismo, se propuso incluir más casos clínicos con comorbilidades para favorecer el razonamiento diagnóstico complejo. Finalmente, se recomendó integrar una práctica final de síntesis, con PV que pudieran presentar sintomatología propia de cualquier trastorno estudiado en la asignatura. Estas observaciones apuntan a una optimización pedagógica y técnica de los PV, con el objetivo de maximizar su impacto formativo en entornos simulados de aprendizaje clínico.

4. DISCUSIÓN Y CONCLUSIONES

Los resultados de este estudio respaldan la utilidad de los PV basados en IA generativa, como Chat-GPT, en la formación clínica de estudiantes de Psicología. La mayoría de los estudiantes informó de mejoras significativas en habilidades fundamentales como la identificación de síntomas, la formulación de diagnósticos diferenciales y el desarrollo del razonamiento clínico. Estos hallazgos son consistentes con estudios previos en medicina (Isaza-Restrepo et al., 2018; Raafat et al., 2023), enfermería (Martín-Fernández, 2024) y psicología clínica (Benalcázar, 2024), que han demostrado que la simulación mediante IA favorece el aprendizaje activo, la autonomía en la toma de decisiones clínicas y la adquisición progresiva de competencias complejas.

Los resultados de este estudio resaltan el valor de los pacientes virtuales en la enseñanza clínica, particularmente en cuanto a la mejora del razonamiento clínico y la capacidad diagnóstica. Estos hallazgos se alinean con estudios previos en otras áreas de salud (García-Torres et al., 2024) que han demostrado que el uso de herramientas de IA, como los PV basados en ChatGPT, ofrece una experiencia más dinámica y participativa que los casos clínicos tradicionales. La capacidad de estos sistemas para ofrecer simulaciones personalizadas y adaptables ha sido clave para el éxito de la implementación en el aula.

Una de las fortalezas clave de este estudio es su carácter innovador: se trata de una de las primeras experiencias sistematizadas de implementación de ChatGPT como PV en el contexto de una asignatura de Psicopatología en el Grado de Psicología. Asimismo, la elevada participación

y el nivel de implicación del estudiantado –con más del 90 % interactuando con los PV en todas las sesiones— aportan solidez a los resultados obtenidos. El diseño del cuestionario, que combinó ítems cuantitativos y cualitativos, permitió evaluar percepciones globales y aspectos específicos en la experiencia del usuario.

En comparación con otros trabajos, como el de García-Torres et al. (2024), que evidencian la eficacia de PV conversacionales para el desarrollo del razonamiento clínico en entornos médicos, o el de Borg et al. (2024), que subraya la importancia de la multimodalidad (uso de robots sociales y lenguaje natural), nuestro estudio demuestra que incluso con un entorno conversacional textual es posible generar aprendizajes significativos en etapas tempranas de la formación clínica. Asimismo, los resultados refuerzan las conclusiones de Gilbert et al. (2024) y Yamada et al. (2025), quienes destacan que los PV pueden facilitar la práctica de habilidades interpersonales como la empatía y la escucha clínica, en un entorno emocionalmente seguro.

Esta experiencia presenta varias fortalezas destacables. En primer lugar, se trata de una propuesta innovadora que introduce de forma pionera el uso de PV basados en IA generativa (ChatGPT) en el ámbito de la formación clínica en Psicología, una disciplina en la que este tipo de simulaciones aún es incipiente. La elevada participación del estudiantado y el alto grado de implicación durante las sesiones sugieren la viabilidad pedagógica del recurso y su potencial para motivar el aprendizaje activo. Además, el diseño metodológico combinó instrumentos cuantitativos y cualitativos. Esto permitió obtener una visión integral de la experiencia desde múltiples dimensiones: técnica, cognitiva y emocional. La integración curricular supervisada, enmarcada en el plan docente, garantiza su aplicabilidad en contextos universitarios reales, y su carácter accesible y replicable mediante tecnologías ampliamente disponibles constituye un valor añadido.

No obstante, el estudio también presenta algunas limitaciones. La ausencia de un grupo de control impide establecer comparaciones directas con otros métodos de enseñanza y limita la posibilidad de inferir causalidad. El uso exclusivo de medidas de autoinforme introduce potenciales sesgos subjetivos, como la deseabilidad social o la sobreestimación del aprendizaje. Asimismo, la experiencia se desarrolló en un único centro universitario, lo que restringe la generalización de los hallazgos a otras instituciones o contextos formativos. Otra limitación relevante es la carencia de elementos multimodales en los PV, como la expresión facial o la comunicación no verbal, que podrían haber incrementado la autenticidad y el valor formativo de la simulación. Finalmente, el grado de dificultad de los casos y la variabilidad en las respuestas de los PV deben ser ajustados para garantizar un mayor realismo y fomentar un razonamiento clínico más profundo. Además, el cuestionario ad hoc empleado no ha sido sometido aún a procedimientos estadísticos de validación (fiabilidad, validez de constructo), por lo que futuras investigaciones deberán abordar este aspecto. Otra limitación es la ausencia de un grupo de control (p. ej., casos escritos o actores estandarizados), lo cual hubiera permitido comparar de forma más rigurosa la eficacia de la experiencia.

Diversas conclusiones se derivan de esta experiencia docente. Primero, los PV generados por IA constituyen una herramienta pedagógica útil y altamente aceptada por los estudiantes para el desarrollo de competencias clínicas en etapas formativas tempranas. Segundo, su implementación favorece la práctica del diagnóstico diferencial, la toma de decisiones clínicas y el razonamiento reflexivo en un entorno seguro y libre de riesgos éticos. Tercero, para maximizar su efectividad, es esencial una supervisión docente que guíe el uso crítico de la herramienta, así como una mejora continua del diseño de los casos clínicos y de las capacidades expresivas de la inteligencia artificial. Cuarto, esta modalidad de aprendizaje resulta especialmente motivadora, más cercana a la

práctica profesional futura y potencialmente transferible a otras asignaturas del ámbito sanitario. En definitiva, el uso de PV generados mediante ChatGPT puede ser una estrategia pedagógica prometedora en la enseñanza de la Psicopatología, con alto potencial para mejorar la preparación clínica del alumnado, incrementar su implicación y favorecer un aprendizaje experiencial reflexivo, eficaz y éticamente seguro.

5. REFERENCIAS

- Benalcázar, H. S. (2024). *Utilidad de ChatGPT como herramienta de apoyo diagnóstico de psicopatologías en adultos ecuatorianos* [Tesis de maestría, Universidad de las Américas].
- Borg, A., Jobs, B., Huss, V., Gentline, C., Espinosa, F., Ruiz, M., Edelbring, S., Georg, C., Skantze, G., & Parodis, I. (2024). Enhancing clinical reasoning skills for medical students: A qualitative comparison of LLM-powered social robotic versus computer-based virtual patients within rheumatology. *Rheumatology International*, 44, 3041–3051. https://doi.org/10.1007/s00296-024-05731-0
- Fatima, A., Shafique, M. A., Alam, K., Fadlalla Ahmed, T. K., & Mustafa, M. S. (2024). ChatGPT in medicine: A cross-disciplinary systematic review. *Medicine*, 103(32), e39250. https://doi.org/10.1097/MD.0000000000039250
- García-Torres, D., Vicente Ripoll, M. A., Fernández Peris, C., & Mira Solves, J. J. (2024). Enhancing clinical reasoning with virtual patients: A hybrid systematic review combining human reviewers and ChatGPT. *Healthcare*, *12*(22), 2241. https://doi.org/10.3390/healthcare12222241
- Gilbert, A., Carnell, S., Lok, B., & Miles, A. (2024). Using virtual patients to support empathy training in health care education: An exploratory study. *Simulation in Healthcare*, *19*(3), 151–157. https://doi.org/10.1097/SIH.000000000000000742
- Imam Hossain, S., Kelson, J., & Morrison, B. (2024). *The use of virtual patient simulations in psychology: A scoping review. Australasian Journal of Educational Technology, 40*(6), 76–91. https://doi.org/10.14742/ajet.9559
- Isaza-Restrepo, A., Gómez, M.-T., Cifuentes, M., & Argüello, A. (2018). The virtual patient as a learning tool: A mixed quantitative qualitative study. *BMC Medical Education*, *18*, 297. https://doi.org/10.1186/s12909-018-1395-1
- Martín-Fernández, M. (2024). DocencIA de enfermería: Explorando el impacto de la Inteligencia Artificial [Trabajo de fin de grado, Universidad de Navarra].
- Raafat, N., Harbourne, A. D., Radia, K., Woodman, M. J., Swales, C., & Saunders, K. E. A. (2023). Virtual patients improve history-taking competence and confidence in medical students. *Medical Teacher*, 45(7), 682–688. https://doi.org/10.1080/0142159X.2023.2273782
- Sánchez-Cerezo, J., Valencia-Agudo, F., Calvo, A., Baltasar Tello, I., Solerdelcoll Arimany, M., Fàbrega Ribera, M., & Ilzarbe, D. (2024). Experiencias con simulación clínica para la formación de residentes de Psiquiatría y Psicología Clínica de la Infancia y la Adolescencia. *Revista de Psiquiatría Infanto-Juvenil*, 41(4), 24–33. https://doi.org/10.31766/revpsij.v41n4a3
- Tay, G. W. N., Tong, M. M., Yap, J., Mak, H. K., Goh, S. Y. S., & Ho, C. S. H. (2025). Virtual reality for experiential learning: Enhancing agitation management skills, confidence, and empathy in health-care students. *Medical Education Online*, *30*(1), Article 2542809. https://doi.org/10.1080/10872981.2025.2542809

- Vicente Ripoll, M. A., Fernández Peris, C., Carmona, R., Carrillo Murcia, I., Guilabert Mora, M., & Martínez Rach, M. O. (2024). *ChatGPT en la Universidad Miguel Hernández: innovación y eficacia en el aula*. En Enseñanza y aprendizaje en la era digital desde la investigación y la innovación (pp. 330–343). Octaedro.
- Yamada, R., Futakawa, K., Xu, K., & Kondo, S. (2025). Using virtual patients to enhance empathy in medical students: A scoping review protocol. *Systematic Reviews*, *14*, 52. https://doi.org/10.1186/s13643-025-02793-4
- Yi, Y., & Kim, K. J. (2025). The feasibility of using generative artificial intelligence for history taking in virtual patients. *BMC Research Notes*, *18*, 80. https://doi.org/10.1186/s13104-025-07157-8

6. ANEXOS

Figura 1. Interfaz de conversación con el paciente virtual.

Figura 2. Formulario de evaluación para práctica clínica.

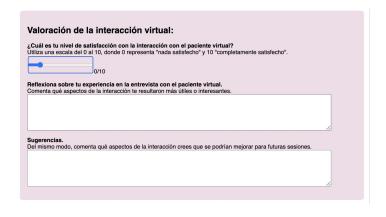


Figura 3. Evaluación de la experiencia con el paciente virtual.

11. La programación colaborativa en estudios universitarios de ingeniería y en enseñanza secundaria como factor diferencial para un aprendizaje significativo¹

Pérez Beltrán, J.¹; Ñeco García, R. P.²

¹Universidad de Alicante, ²Universidad Miguel Hernández

RESUMEN

En este trabajo se presenta una propuesta metodológica para la docencia de la programación en asignaturas de grado relacionadas con la automatización industrial, con el objetivo de mejorar la comprensión conceptual, las habilidades prácticas y la motivación del alumnado. La propuesta metodológica se ha aplicado también en asignaturas de informática en últimos cursos de enseñanza secundaria, lo cual ha permitido comparar su efectividad en distintos niveles educativos. En ambos casos, partiendo de las dificultades habituales que encuentran los estudiantes en la formalización lógica y la especificación de programas, se ha diseñado una estrategia basada en aprendizaje colaborativo, juegos y herramientas digitales interactivas. La metodología se desarrolla en cuatro fases: análisis colaborativo de casos prácticos, diseño estructurado y documentado usando wikis, implementación práctica con autómatas Siemens S7-1200, y evaluación continua mediante herramientas como Kahoot o Moodle. Los resultados, obtenidos a partir de cuestionarios, encuestas y evaluaciones prácticas, muestran mejoras significativas respecto a metodologías tradicionales. Estos resultados son similares en los dos niveles educativos, lo cual ha permitido validar la posibilidad de aplicar el enfoque en distintos contextos educativos. Se concluye que el uso de técnicas colaborativas mejora la motivación y el aprendizaje significativo en asignaturas de programación para estudios o titulaciones no específicas de informática, aportando un modelo adaptable a otros contextos docentes en ingeniería.

PALABRAS CLAVE: docencia en programación, programación colaborativa, innovación educativa, aprendizaje significativo.

1. INTRODUCCIÓN

La enseñanza de la programación en titulaciones universitarias de ingeniería plantea retos significativos, especialmente cuando se introduce en grados cuya especialización no es informática y en asignaturas aplicadas como las del ámbito de la automatización industrial, tal y como han señalado estudios recientes (Ramos-Rodriguez et al., 2024; Sandstrak et al., 2024). Muchos estudiantes experimentan dificultades en la formalización lógica de los problemas y en el diseño estructurado de soluciones mediante lenguajes como C++, una situación ampliamente descrita en la literatura actual (Chuang & Chang, 2024; Gao et al., 2025; Huang et al., 2024; Qian & Choi, 2023). A ello se suma, en ocasiones, una baja implicación inicial, lo que repercute tanto en el aprendizaje conceptual como en el desarrollo de competencias prácticas (Florou et al., 2025). Ante esta situación, se ha desarrollado una

¹ El presente trabajo ha contado con una ayuda del Programa de Redes de investigación en docencia universitaria del Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2024). Ref.: 6193

metodología basada en la programación colaborativa, que incorpora dinámicas de trabajo en equipo, juegos y el uso de herramientas digitales para mejorar la comprensión de los contenidos y fomentar un aprendizaje más activo, siguiendo experiencias recientes en este ámbito (Pérez & Ñeco, 2025; Sun & Xu, 2025). La propuesta se ha diseñado para integrarse de forma natural en asignaturas técnicas de ingeniería, con el fin de favorecer conexiones entre teoría y práctica, estimular la motivación del alumnado y reforzar su capacidad de abstracción (Pérez et al., 2024).

En paralelo a esta experiencia en el nivel universitario, se ha aplicado también la metodología en educación secundaria, concretamente en el nivel del bachillerato (últimos cursos de secundaria, previos a la universidad). En este nivel, la programación orientada a objetos (POO) supone un desafío añadido, al tratarse de una disciplina compleja que exige competencias abstractas, estructuración lógica y autonomía, todo ello en un entorno donde la programación no siempre forma parte del currículo troncal. Se ha aplicado una variante metodológica adaptada, basada en Programación Colaborativa Orientada a Objetos (PCOO), que alterna dinámicas grupales e individuales para facilitar la comprensión progresiva de los conceptos fundamentales y mejorar la implicación del alumnado en su aprendizaje.

Diversas investigaciones recientes han abordado los beneficios del aprendizaje colaborativo en la enseñanza de la programación, especialmente en contextos de educación técnica y superior. Así, por ejemplo, en los trabajos de (Alacapınar & Uysal, 2020; Lai & Wong, 2022; Mercier & Goldstein, 2023; Ralston et al., 2017) se ha comprobado que la colaboración entre estudiantes favorece la adquisición de competencias técnicas y transversales esenciales para el perfil profesional del ingeniero. Además, la integración de enfoques colaborativos mejora tanto la motivación como la retención de conocimientos, y permite simular escenarios reales de trabajo en equipo (van Helden et al., 2023).

En el contexto concreto de la programación, Krismadinata et al. (2023) demuestran mejoras significativas en el rendimiento académico cuando se implementan metodologías basadas en programación colaborativa, especialmente en el aprendizaje de la programación orientada a objetos. De forma complementaria, Silva et al. (2020) y Xu y Correia (2023) destacan el papel de las plataformas digitales colaborativas, que permiten una interacción más rica y reflexiva entre pares.

En el ámbito de la automatización industrial, en (Ñeco & Pérez, 2023) se muestra que las estrategias cooperativas aplicadas al diseño de automatismos contribuyen a una comprensión más profunda del proceso y a una mayor implicación del alumnado. Estas conclusiones se ven reforzadas por experiencias híbridas posteriores (Pérez & Ñeco, 2025), que combinan trabajo individual y colaborativo mediante el uso de entornos digitales estructurados, con resultados positivos tanto en términos de rendimiento como de percepción subjetiva por parte del estudiantado.

Estos antecedentes proporcionan un marco teórico sólido que justifica la aplicación de metodologías colaborativas en distintos niveles educativos, y orientan el diseño de nuestro estudio, en el que se comparan los efectos del trabajo colaborativo en la enseñanza de la programación, tanto en educación secundaria como en ingeniería.

El objetivo general de este trabajo es evaluar si el uso de una metodología colaborativa en la enseñanza de la programación mejora el rendimiento académico, la comprensión de conceptos básicos y la motivación del alumnado, tanto en el nivel universitario como en el de secundaria. De manera más específica, se pretende: (1) detectar las dificultades iniciales en la formalización lógica y el diseño de soluciones; (2) diseñar y aplicar una propuesta metodológica colaborativa que incorpore herramientas digitales y dinámicas activas; (3) comparar los resultados obtenidos por el alumnado en ambos niveles al trabajar individualmente frente a metodologías colaborativas; y (4) analizar la valoración de la experiencia por parte del alumnado mediante encuestas y cuestionarios. Se parte de la hipótesis

de que el enfoque colaborativo, al fomentar el aprendizaje entre iguales y la resolución conjunta de problemas, tendrá un impacto positivo en los resultados académicos y en la actitud del alumnado hacia la programación. Este trabajo pone también de relieve la importancia de la colaboración entre docentes de secundaria y universidad para desarrollar propuestas didácticas compartidas, generar sinergias metodológicas y avanzar hacia una enseñanza de la programación más coherente, progresiva y significativa a lo largo de las etapas educativas.

2. MÉTODO

En el ámbito universitario, la metodología se ha aplicado en una asignatura de ingeniería centrada en el diseño e implementación de automatismos industriales. El alumnado ha trabajado primero sobre el diseño estructurado del automatismo, y posteriormente su programación en autómatas y la validación práctica sobre maquetas físicas de procesos reales. El enfoque metodológico ha combinado dinámicas colaborativas, uso de herramientas digitales y evaluación continua, buscando mejorar tanto la competencia técnica como la implicación del estudiantado.

En enseñanza secundaria, la metodología se ha aplicado para valorar su eficacia en la enseñanza de la programación orientada a objetos. En particular, se compara el enfoque de Programación Colaborativa Orientada a Objetos (PCOO) frente a la enseñanza individual convencional de la programación orientada a objetos (POO) en alumnado de Bachillerato. El método se basa en un diseño de "grupos cruzados": cada participante trabaja sucesivamente de forma colaborativa e individual, lo que permite controlar la variabilidad dependiente de cada estudiante. Se combinan métodos cuantitativos (pruebas de evaluación, prácticas, análisis correlacional) y cualitativos, para obtener una visión más completa y contrastada de los resultados.

2.1. Descripción del contexto y de los participantes

En la universidad, el estudio se ha desarrollado en la asignatura "Automatización Industrial" del Grado en Ingeniería Eléctrica (Universidad Miguel Hernández de Elche), donde participaron 15 estudiantes en 2023–24 y 18 en 2024–25, de entre 20 y 22 años. La asignatura incluye diagramas GRAFCET, programación en esquema de contactos, autómatas Siemens S7-1200 (TIA Portal) y diseño básico de reguladores PID. La metodología colaborativa se aplicó en sesiones prácticas con maquetas físicas de procesos industriales durante 15 semanas (60 horas lectivas).

En secundaria, la experiencia se ha realizado en la aignatura "Programación, Redes y Sistemas Informáticos II" (2º de Bachillerato), con 22 estudiantes de perfil heterogéneo y conocimientos previos de programación estructurada. La metodología de Programación Colaborativa Orientada a Objetos (PCOO) se ha aplicado a lo largo de cinco meses en bloques progresivos de contenidos, combinando trabajo individual y grupal (5–6 personas), lo que permitió analizar el impacto diferencial del enfoque colaborativo (Yang, 2023).

2.2. Instrumentos

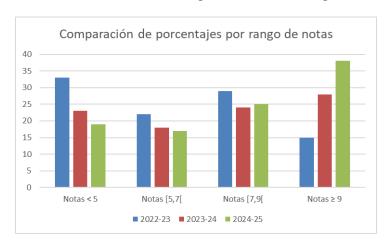
En la universidad se han empleado herramientas de diseño (diagramas GRAFCET), programación en Siemens S7-1200 (TIA Portal) y maquetas físicas o simuladas. La evaluación ha incluido pruebas previas y finales con preguntas teóricas y prácticas, encuestas de satisfacción y análisis cualitativo de wikis y foros en Moodle, además de evaluación entre pares centrada en la calidad de las aportaciones.

En secundaria se ha usado Visual Studio Code (versión colaborativa) para las actividades en grupo y Code::Blocks para las individuales. La evaluación ha combinado ejercicios prácticos, exámenes tipo test en Moodle y encuestas de opinión. Los ejercicios se diseñaron para cada fase (funciones, parámetros, registros, vectores, memoria dinámica), corrigiéndose de forma cualitativa. Esta combinación de instrumentos ha permitido contrastar rendimiento objetivo y percepción del alumnado.

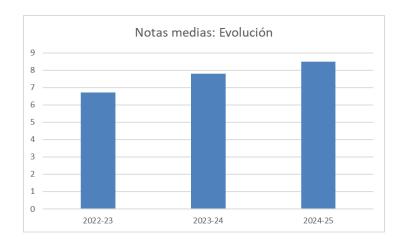
2.3. Procedimiento

En el ámbito universitario, la metodología se ha implementado en cuatro fases integradas en las sesiones de laboratorio de la asignatura "Automatización Industrial". En primer lugar, el alumnado trabaja de forma individual con TIA Portal y autómatas Siemens S7-1200 para conseguir familiarizarse con el entorno y detectar dificultades comunes. Posteriormente, se organizan grupos que abordan casos prácticos inspirados en procesos industriales, documentando sus propuestas de forma progresiva en wikis de Moodle (Xu & Correia, 2023), utilizando diagramas GRAFCET estructurados y siguiendo la guía GEMMA (Guía para la Elaboración de Modelos de Mando Automatizado) como referencia metodológica. A continuación, los automatismos diseñados se implementan y validan en maquetas físicas, incorporando dinámicas motivadoras próximas al *challenge-based learning* (Gómez & Doulougeri, 2022). Finalmente, la evaluación se realiza mediante Kahoot y cuestionarios en Moodle (Rafique et al., 2021), complementados con autoevaluaciones grupales centradas en la calidad de la colaboración y los aprendizajes conseguidos (Sun & Xu, 2025).

En secundaria, también se han seguido cuatro fases. En la fase inicial, de carácter introductorio, se familiariza al alumnado con los conceptos básicos de la programación orientada a objetos (POO) y con los entornos de desarrollo utilizados: Visual Studio Code (colaborativo) y Code::Blocks (individual). Después, se divide al alumnado en grupos colaborativos e individuales para resolver diez ejercicios, seguidos de un examen en Moodle. En la tercera fase se invierten los roles previos, trabajando con conceptos más avanzados (vectores, registros, memoria dinámica) y realizando una nueva prueba tipo test. Por último, se realiza un cuestionario de opinión en Moodle y se analizan conjuntamente las prácticas realizadas, los exámenes y las encuestas de opinión para valorar el impacto de la PCOO frente al enfoque individual.


3. RESULTADOS

En el ámbito universitario, los resultados obtenidos tras la aplicación de la metodología apuntan a una mejora significativa en el rendimiento y la implicación del alumnado. El análisis de las calificaciones finales revela una evolución positiva sostenida en los tres últimos cursos académicos. La media de las notas ha pasado de un 6,7 en el curso 2022–23 a un 7,6 en 2023–24, alcanzando un 8,5 en 2024–25 (figura 1). Esta tendencia se ve reforzada por la evolución de la distribución por rangos de calificación (figura 2), donde destaca un aumento progresivo del porcentaje de estudiantes con notas iguales o superiores a 9 (del 15 % al 38 %), así como una notable disminución de los suspensos (del 33 % al 19 %).

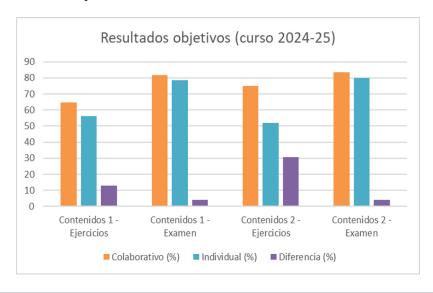

Más allá de los datos cuantitativos, los resultados cualitativos recogidos mediante encuestas y análisis de interacción en plataformas digitales reflejan un alto grado de satisfacción con la metodología utilizada. Los estudiantes valoran positivamente el trabajo en equipo, la documentación progresiva y colaborativa en wikis, y la posibilidad de aplicar los conocimientos en escenarios realistas mediante el uso de maquetas físicas y autómatas Siemens S7-1200. Del mismo modo, se destaca la utilidad de

las herramientas digitales (como Kahoot o cuestionarios de Moodle) para fomentar una evaluación continua más dinámica y participativa, así como la autoevaluación grupal para favorecer la reflexión crítica y la toma de conciencia sobre el propio aprendizaje.

En conjunto, los resultados refuerzan la idea de que el aprendizaje colaborativo mejora, no solo la competencia técnica en automatización, sino también la actitud y la autonomía del alumnado. La comparación con cursos anteriores, donde se utilizaba una metodología más tradicional, permite afirmar que la estrategia colaborativa ha contribuido a un aprendizaje más profundo y significativo, alineado con las demandas formativas del entorno profesional de la ingeniería.

Figura 1. Evolución de la nota media final en la asignatura Automatización Industrial. Se observa una mejora progresiva tras la implantación de la metodología colaborativa.

Figura 2. Comparación de los porcentajes de estudiantes por rangos de calificación en los tres últimos cursos académicos.


Además de la mejora objetiva en las calificaciones, los indicadores de participación y percepción del alumnado universitario refuerzan la validez de la metodología. En las wikis de Moodle se registraron más de 120 contribuciones en el cuatrimestre, con un seguimiento progresivo de los diseños y un uso frecuente de la retroalimentación entre pares. En las encuestas de satisfacción aplicadas al finalizar la asignatura, el 82 % de los estudiantes valoró positivamente la dinámica colaborativa con

wikis y maquetas físicas, destacando la utilidad de aplicar los contenidos en escenarios prácticos y realistas. La comparación con cursos previos también resulta significativa: la nota media pasó de 6,7 en 2022–23 a 8,5 en 2024–25, con una reducción de suspensos del 33 % al 19 % y un incremento de sobresalientes del 15 % al 38 %. Estos resultados confirman que la metodología no solo mejora el rendimiento académico, sino que también incrementa la motivación y la implicación en el trabajo práctico.

En enseñanza secundaria, los datos recogidos permiten evaluar el impacto de la metodología PCOO en el aprendizaje de la programación orientada a objetos, a través del análisis de los ejercicios prácticos, los exámenes tipo test realizados en Moodle y la comparación entre el trabajo individual y colaborativo. En ambas fases del estudio –correspondientes a los bloques de contenidos sobre funciones y parámetros (fase 2) y estructuras dinámicas y registros (fase 3)— se observa una mejora significativa en el rendimiento del alumnado que trabajó de forma colaborativa.

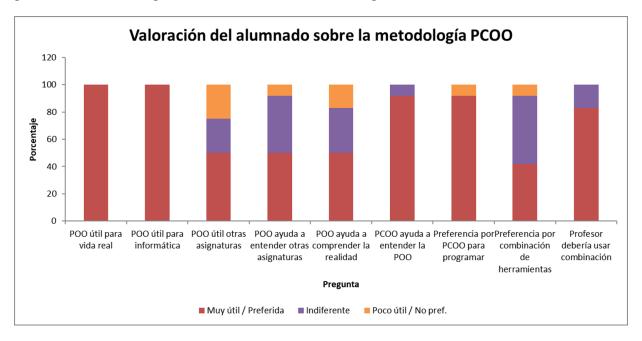
En la fase 2 (funciones y parámetros), el grupo colaborativo también superó al individual: 0,65 frente a 0,56 en ejercicios (+12,9 %) y 0,82 frente a 0,78 en el examen (+4,1 %). La correlación entre ejercicios y examen fue muy alta (r = 0,88), confirmando la coherencia entre práctica y evaluación. La Figura 2 muestra gráficamente estas diferencias.

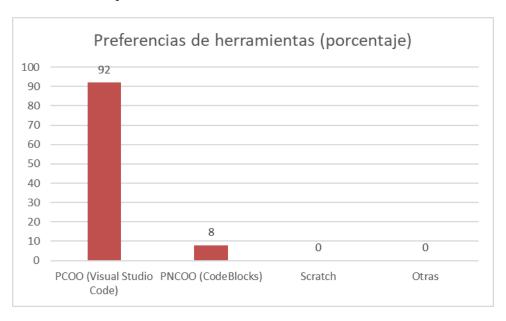
En la fase 3 (vectores, registros y memoria dinámica), el grupo colaborativo obtuvo mejores resultados: 0,75 frente a 0,52 en ejercicios individuales (+30,6 %) y 0,83 frente a 0,80 en el examen (+4,0 %). La correlación entre ejercicios y examen fue alta (r = 0,73), lo que refuerza la coherencia de los resultados. La Figura 3 resume visualmente este rendimiento superior del grupo colaborativo en prácticas y evaluaciones tipo test

Figura 3. Comparación de resultados en ejercicios y exámenes entre los grupos colaborativo e individual (curso 2024–25).

En cuanto a los resultados globales, la mejora media en los ejercicios evaluados a favor del grupo colaborativo fue del 21,73 %, mientras que en los exámenes tipo test fue del 4,04 %, obteniéndose una media total de mejora del 12,89 %. Estos datos permiten concluir que la aplicación de la metodología colaborativa no solo mejora los resultados prácticos, sino que también repercute positivamente en el rendimiento en pruebas teóricas.

Además del rendimiento objetivo, se ha obtenido la valoración del alumnado sobre la metodología. Tal como se muestra en la figura 4, la mayoría de los estudiantes considera que la programación orientada a objetos (POO) es útil para la vida real, para el aprendizaje de la informática y para otras asignaturas. Asimismo, se observa una clara preferencia por el enfoque colaborativo (PCOO), especialmente cuando se combina con el trabajo individual. La opinión favorable sobre la utilidad del método PCOO para entender la POO es mayoritaria, y un porcentaje también elevado considera que el profesorado debería aplicar esta combinación metodológica en clase.




Figura 4. Valoración del alumnado sobre la metodología PCOO: utilidad percibida y preferencias didácticas.

A partir de la figura 4 se observa que la valoración del alumnado sobre la metodología PCOO es claramente positiva. La gran mayoría considera que la programación orientada a objetos resulta útil o muy útil, tanto para la vida real como para el aprendizaje de la informática, lo que refuerza la aplicabilidad práctica de la propuesta. Además, una proporción elevada del estudiantado muestra preferencia por el enfoque colaborativo frente al individual, confirmando la percepción de que la interacción entre pares facilita la comprensión y motiva más el aprendizaje.

Un análisis más detallado de las encuestas permite profundizar en estas percepciones. Así, un 92 % del alumnado afirma que la PCOO le ha ayudado a entender mejor la programación orientada a objetos, mientras que un 67 % considera que le ha permitido mejorar sus resultados en los exámenes. Asimismo, el 50 % indica que la programación resultaba más interesante con herramientas colaborativas, y un 58 % manifestó haberse sentido más creativo tras la experiencia colaborativa realizada. Estas respuestas abiertas destacan también ventajas como la rapidez en la resolución de problemas, el aprendizaje junto a compañeros con conocimientos más avanzados, y la preparación para contextos de trabajo en equipo. Entre los inconvenientes, el alumnado encuestado ha señalado la complejidad inicial de la herramienta y la desigual implicación de algunos miembros en la dinámica colaborativa.

En cuanto a la herramienta preferida para programar, los resultados de la encuesta muestran una clara inclinación hacia el enfoque colaborativo. Tal como se observa en la Figura 5, el 92 % del alumnado eligió Visual Studio Code en su versión colaborativa (PCOO) como opción principal, frente a

un 8 % que optó por CodeBlocks (PNCOO) y un 0 % que seleccionó alternativas como Scratch u otras herramientas. Esta preferencia mayoritaria refuerza la idea de que la metodología colaborativa resulta no solo más eficaz en términos de aprendizaje y evaluación, sino también más atractiva para los estudiantes de cara a su aplicación futura.

Figura 5. Preferencia de herramienta para programar. Distribución de las respuestas del alumnado a la pregunta "¿Qué herramienta elegirías para programar?".

En la figura 6 se muestran indicadores adicionales procedentes de preguntas específicas del cuestionario aplicado al alumnado, que van más allá de la utilidad percibida y las preferencias didácticas mostradas en la Figura 4. En concreto, un 92 % respondió afirmativamente a la pregunta "¿Crees que el aprendizaje de la PCOO (Visual Studio Code) te ha ayudado a entender mejor la POO?", lo que refuerza la idea de que el trabajo colaborativo favorece la asimilación de conceptos complejos. De forma complementaria, un 67 % afirmó en la pregunta "¿Crees que el aprendizaje con PCOO te ha ayudado a obtener una mejor nota en el examen de POO?" que esta metodología ha tenido un impacto directo en sus resultados, en consonancia con las mejoras objetivas observadas en los exámenes.

Otros aspectos relevantes se relacionan con motivación y creatividad. Así, en la pregunta "¿Te resulta más interesante la programación si utilizas herramientas colaborativas en lugar de individuales?", la mitad del alumnado (50 %) indica que la programación le ha resultado más atractiva al trabajar de forma colaborativa. Además, un 58 % contestó afirmativamente a la pregunta "¿Creéis que sois más originales o creativos después de haber aprendido a programar?", lo que sugiere que la metodología no solo mejora la adquisición de conocimientos técnicos, sino que también potencia competencias transversales como el interés por la materia y la capacidad de generar soluciones originales. En conjunto, estos resultados complementan y amplían lo mostrado en la figura 4, ofreciendo una visión más completa del impacto de la metodología colaborativa: no solo mejora el rendimiento académico, sino que también incrementa la motivación y la percepción del propio alumnado sobre su aprendizaje y creatividad.

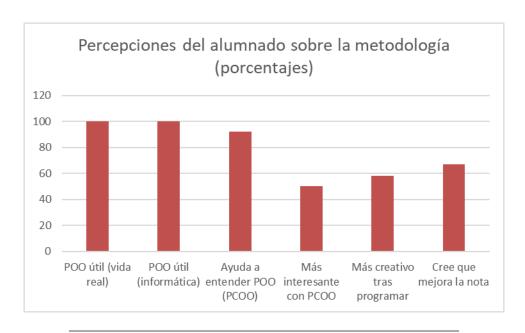


Figura 6. Percepciones clave del alumnado sobre la metodología PCOO.

4. DISCUSIÓN Y CONCLUSIONES

Los resultados obtenidos en ambos niveles educativos avalan la eficacia de las metodologías basadas en programación colaborativa como herramienta para mejorar el aprendizaje en asignaturas de programación. Estos resultados refuerzan los resultados previos en los que se documenta la aplicabilidad transversal de esta metodología en distintos niveles educativos (Pérez et al., 2024). En el ámbito universitario se ha observado una mejora notable en el rendimiento académico tras la implementación de la metodología colaborativa. En concreto, se observa un aumento significativo en la nota media final de la asignatura Automatización Industrial, así como una disminución del número de suspensos y un incremento de las calificaciones más altas. Estos resultados coinciden con lo señalado por Mercier y Goldstein (2023), quienes destacan el impacto positivo de la colaboración estructurada sobre la motivación, la retención de conocimientos y la adquisición de competencias prácticas en contextos de ingeniería. Asimismo, las observaciones cualitativas y los datos de interacción en los wikis de Moodle confirman una mayor implicación del alumnado y un desarrollo progresivo de las tareas, que ha sido posible gracias al seguimiento del profesorado y a la retroalimentación continua durante el proceso.

En el contexto de enseñanza secundaria, los resultados también permiten valorar positivamente la eficacia de la metodología de Programación Colaborativa Orientada a Objetos (PCOO). El alumnado que ha trabajado de forma colaborativa ha obtenido una ganancia global del 12,89 % frente al enfoque individual. Los resultados obtenidos refuerzan lo descrito en estudios como García (2021) y Krismadinata et al. (2023), donde se concluye que las estrategias cooperativas favorecen el aprendizaje significativo en programación.

Los resultados muestran que la programación colaborativa fomenta un aprendizaje más activo y profundo en ambos niveles educativos. En la universidad, la evaluación entre pares y la documentación compartida han mejorado el rendimiento y la motivación, mientras que en secundaria, el uso de Visual Studio Code ha facilitado la comprensión de la POO y el desarrollo de competencias co-

municativas. Las encuestas reflejan una valoración muy positiva de la metodología, mientras que el diseño híbrido con rotación de roles ha ayudado a diferenciar mejor el efecto específico del enfoque aplicado.

Como todo estudio en contextos reales, esta investigación presenta limitaciones derivadas de su aplicación en grupos específicos de universidad y secundaria, lo que condiciona la generalización de los resultados. Aun así, ofrece un análisis detallado en entornos representativos y abre la puerta a futuros trabajos que amplíen la muestra, diversifiquen contextos y prolonguen el seguimiento para valorar la consolidación de los aprendizajes. También resulta prometedor profundizar en competencias transversales —como el trabajo en equipo y la reflexión crítica— en escenarios colaborativos, especialmente en ingeniería y programación.

En conjunto, la principal aportación de este trabajo radica en haber demostrado, mediante una aplicación paralela en el nivel universitario y en secundaria, que la programación colaborativa constituye un enfoque metodológico transversal, capaz de mejorar simultáneamente el rendimiento, la motivación y la comprensión conceptual del alumnado en distintos niveles educativos. Este valor diferencial reside en la validación empírica de una misma estrategia en contextos formativos diversos, lo que abre la posibilidad de transferir y adaptar la metodología a otros ámbitos de la enseñanza de la programación y de la ingeniería, fortaleciendo así la coherencia y continuidad del aprendizaje a lo largo de la trayectoria académica.

5. REFERENCIAS

- Alacapınar, F. G., & Uysal, H. (2020). The effect of cooperative learning in education: A meta-analysis study. *Research on Education and Psychology*, 4(1), 54–72. https://dergipark.org.tr/en/pub/rep/issue/51863/712301
- Chuang, Y.-T., & Chang, H.-Y. (2024). Analyzing novice and competent programmers' problem-solving behaviors using an automated evaluation system. *Science of Computer Programming*, *237*, 103138. https://doi.org/10.1016/j.scico.2024.103138
- Florou, C., Stamoulis, G., Xenakis, A., & Plageras, A. (2025). The role of educators in facilitating students' self-assessment in learning computer programming concepts: Addressing students' challenges and enhancing learning. *Education and Information Technologies*, *30*, 8567–8590. https://doi.org/10.1007/s10639-024-13172-2
- Gao, Z., Yan, H., Liu, J., Zhang, X., Lin, Y., Zhang, Y., Sun, X., & Feng, J. (2025). Tracing distinct learning trajectories in introductory programming course: A sequence analysis of score, engagement, and code metrics for novice computer science vs. math cohorts. *International Journal of STEM Education*, 12, 27. https://doi.org/10.1186/s40594-025-00546-2
- Gómez, S. M., & Doulougeri, K. (2022). Challenge-based learning curriculum development: A suitable framework for engineering education. En H.-M. Järvinen, S. Silvestre, A. Llorens, & B. V. Nagy (Eds.), *Proceedings of the 50th Annual Conference of the European Society for Engineering Education*, *SEFI 2022* (pp. 1196–1205). Universitat Politècnica de Catalunya. https://doi.org/10.5821/conference-9788412322262.1285
- Huang, Y., Schunn, C. D., Guerra, J., & Brusilovsky, P. (2024). Why students cannot easily integrate component skills: An investigation of the composition effect in programming. *ACM Transactions on Computing Education*, 24(3), Article 17. https://doi.org/10.1145/3673239

- Krismadinata, E., Boudia, C., Jama, J., & Saputra, A. Y. (2023). Effect of collaborative programming on students' achievement in learning object-oriented programming. *International Journal of Information and Education Technology*, *13*(5), 792–800. https://doi.org/10.18178/ijiet.2023.13.5.1869
- Lai, X., & Wong, G. K. (2022). Collaborative versus individual problem solving in computational thinking through programming: A meta-analysis. *British Journal of Educational Technology*, 53(1), 150–170. https://doi.org/10.1111/bjet.13157
- Mercier, E., & Goldstein, M. H. (2023). Collaborative learning in engineering education. In A. Johri (Ed.), *International Handbook of Engineering Education Research* (pp. 402–432). Routledge. https://doi.org/10.4324/9781003287483-23
- Ñeco, R. P., & Pérez, J. R. (2023). Using cooperative learning to enhance programming skills in industrial automation design courses. En *Proceedings of the 15th International Conference on Education and New Learning Technologies (EDULEARN 23)* (pp. 3513–3521). Palma, Spain: IATED. https://doi.org/10.21125/edulearn.2023.0961
- Pérez, J., & Ñeco, R. P. (2025). A hybrid methodology for structured programming education using collaborative platforms. En L. Gómez Chova, C. González Martínez & J. Lees (Eds.), *Proceedings of the 19th Annual International Technology, Education and Development Conference* (INTED 2025) (pp. 2673–2680). IATED. https://doi.org/10.21125/inted.2025.0721
- Pérez, J., Neco, R. P., García Aracil, N. M., Catalán Orts, J. M., & Nikolaichvili, J. (2024). Experiencias e impacto de una estrategia colaborativa en la docencia de la programación: Análisis comparativo en el nivel universitario y secundaria. En R. Satorre Cuerda (Coord.), *Redes de Investigación e Innovación en Docencia Universitaria*. Volumen 2024 (pp. 189–202). Universidad de Alicante, Instituto de Ciencias de la Educación. http://hdl.handle.net/10045/149061
- Qian, Y., & Choi, I. (2023). Tracing the essence: Ways to develop abstraction in computational thinking. *Educational Technology Research and Development*, 71(3), 1055–1078. https://doi.org/10.1007/s11423-022-10182-0
- Rafique, A., Khan, M. S., Jamal, M. H., Tasadduq, M., Rustam, F., Lee, E., Washington, P. B., & Ashraf, I. (2021). Integrating learning analytics and collaborative learning for improving students' academic performance. *IEEE Access*, *9*, 167812–167826. https://doi.org/10.1109/AC-CESS.2021.3135309
- Ralston, P. A. S., Tretter, T. R., & Kendall-Brown, M. (2017). Implementing collaborative learning across the engineering curriculum. *Journal of the Scholarship of Teaching and Learning*, *17*(3), 89–108. https://doi.org/10.14434/v17i3.21323
- Ramos-Rodriguez, R., Calle, M., Coronell, G., & Becerra, J. E. C. (2024). Transdisciplinarity and team-based learning: Strategies for an introductory programming course. *IEEE Transactions on Education*, 67(2), 317–326. https://doi.org/10.1109/TE.2024.3367617
- Sandstrak, G., Klefstad, B., Styve, A., & Raja, K. (2024). Analyzing pedagogic practice and assessments in a cross-campus programming course. *IEEE Transactions on Education*, 67(6), 964–973. https://doi.org/10.1109/TE.2024.3465870
- Silva, L., Mendes, A. J., & Gomes, A. (2020). Computer-supported collaborative learning in programming education: A systematic literature review. En M. Castro (Ed.), *2020 IEEE Global Engineering Education Conference* (pp. 1086–1095). IEEE. https://doi.org/10.1109/EDUCON45650.2020.9125237
- Sun, D., & Xu, F. (2025). Real-time collaborative programming in undergraduate education: A comprehensive empirical analysis of its impact on knowledge, behaviors, and attitudes. *Journal of Educational Computing Research*, 63(1), 33–63. https://doi.org/10.1177/07356331241295739

- van Helden, G., Zandbergen, B. T. C., Specht, M. M., & Gill, E. K. A. (2023). Collaborative learning in engineering design education: A systematic literature review. *IEEE Transactions on Education*, 66(5), 509–521. https://doi.org/10.1109/TE.2023.3283609
- Xu, F., & Correia, A. P. (2023). Adopting distributed pair programming as an effective team learning activity: A systematic review. *Journal of Computing in Higher Education*, *36*, 320–349. https://doi.org/10.1007/s12528-023-09356-3
- Yang, X. (2023). Creating learning personas for collaborative learning in higher education: A Q methodology approach. *International Journal of Educational Research Open*, 4. https://doi.org/10.1016/j.ijedro.2023.100250

12. Fostering Socioemotional Competencies in Higher Education through Active Methodologies and Emerging Technologies: A Cross-Cultural Study¹

Pozo-Rico, Teresa; Gutiérrez Fresneda, Raúl

Universidad de Alicante

ABSTRACT

This study presents the design, implementation, and outcomes of the Empowering Horizons: Active Methodologies and Emerging Technologies (EHA-EMT) program, aimed at enhancing socioemotional competencies in higher education through innovative pedagogical strategies. Conducted across Spain, Poland, Cuba, and Thailand with 481 undergraduate teacher education students, the intervention integrated active methodologies-such as peer-led group rotations and collaborative learningwith emerging digital technologies including Moodle, multimedia resources, concept mapping, and virtual forums. Pre- and post-intervention data were collected using validated self-report instruments, complemented by qualitative feedback. Results revealed high levels of satisfaction across all countries, with average scores above 4.5/5, and strong engagement in both digital tools and group-based learning. Participants reported substantial improvements in emotional awareness, self-regulation, resilience, and interpersonal skills. Notably, 88% of students affirmed the program's positive impact on academic performance and professional readiness. Cultural adaptability was evident, with each country showing unique yet converging benefits from the blended approach. The findings underscore the transformative potential of embedding socioemotional training into university curricula through active pedagogies and technological innovation. By fostering reflective, collaborative, and future-oriented learning, the EHA-EMT program offers a scalable and culturally responsive model for strengthening emotional intelligence and preparing educators to meet the complex challenges of contemporary educational contexts.

KEYWORDS: Cross-cultural, higher education, socioemotional skills, active methodologies, emerging technologies

1. INTRODUCTION

1.1. The Issue at Stake

Emotional competence has emerged as a key factor in developing quality interpersonal relationships, adaptive responses to adversity, and success in both academic and professional settings (Fertig Universities are undergoing a significant transition, involving both their institutional identity as centers of higher education and the design of curricular content across academic programs (Nam & English, 2025; Vallis et al., 2024; Vasylyshyna et al., 2023). These shifts reflect ongoing changes in educational systems shaped by the evolving societal context and the new European geopolitical landscape, as outlined in the European Higher Education Area (EHEA).

¹ This work has been supported by a grant from the University of Alicante's Institute of Educational Sciences, under the University Teaching Research Networks Program (call 2022), Reference: Research Network 6104.

In response to these transitions, there is a growing demand for divergent and socially engaged thinking that connects and mobilizes various stakeholders (Gerritsen et al., 2024; Hays, 2024; Rasi et al., 2024; Tekle et al., 2025). At the same time, employers and institutions are increasingly seeking graduates with not only technical expertise but also additional competencies that provide clear added value (Berdrow et al., 2025; Merolli et al., 2025; Pozo-Villafuerte & Villacís-Miranda, 2025; Tumpa et al., 2023).

Today's graduates are expected to demonstrate a broad skill set including teamwork, leadership, self-confidence, self-regulation, and high-level performance capabilities (Jiang & Wang, 2025; Kirova & Yordanova, 2024; Tsukanova et al., 2023; Yusuf et al., 2024). Thus, technical knowledge alone is no longer sufficient for optimal professional development or access to leadership positions. Personal growth, emotional maturity, and the development of resilience during university studies have become essential (Çakmak & Yigit, 2024; Chernobay & Lytaeva, 2024; Piróg & Hibszer, 2023).

Accordingly, this study addresses the design and implementation of a socioemotional development program aimed at enhancing students' emotional well-being, academic performance, and future professional readiness. The research strategy involves the integration of a Moodle-based virtual platform used alongside traditional in-person classes to develop key socioemotional skills. The program content includes modules on flow experience, multiple intelligences and talents, personal strengths, creativity, emotional regulation, excellence orientation, and empowerment for creating positive synergies in high-performance environments.

1.2. Background

The present study builds upon this scientific evidence to design and implement an advanced training course focused on strengthening socioemotional skills and optimizing performance in high-demand environments through emotional self-awareness, empathic understanding, and emotionally intelligent communication.

The proposed program encourages students to explore emotions through observation, questioning, advocacy of personal values, and respect for differing perspectives. It is aimed at fostering reflective analysis, problem-solving, and the formulation of adaptive and logical responses to real-life challenges. These elements are fundamental for cultivating self-confidence, effective interpersonal functioning, and resilience—competencies increasingly demanded in globalized and rapidly changing work environments (Bell et al., 2022; Tsalikova & Pakhotina, 2019; Vinichenko et al., 2018).

More recent research suggests that EI fosters empowerment, divergent thinking, and innovation in complex and multicultural contexts—making it highly relevant in contemporary higher education systems, particularly within the framework of the European Higher Education Area (EHEA). The Bologna Process has shifted the focus from exclusively technical training to a more comprehensive educational model that includes teamwork, communication, project presentation, and time management as core elements (Jia et al., 2024; Peifer et al., 2023; Pozo-Rico et al., 2019).

Within this paradigm, emotional education is not an ancillary aspect of university curricula but rather a foundational pillar of personal development, community engagement, and future professional success. Therefore, the emotional competence program described in this study is designed to contribute meaningfully to the transformation of higher education by empowering university students to become more self-aware, emotionally skilled, and socially responsible global citizens (Cseh et al., 2025; Sandoval-Palis et al., 2020; Wut et al., 2025).

1.3. Objectives

The main objective of this program is to empower the development of socioemotional competencies in university students through the integration of active methodologies and emerging technologies, fostering collaborative, dynamic, and accessible learning across diverse educational contexts.

The specific objectives are:

- 1. To evaluate the impact of active methodologies combined with digital tools on students' motivation, engagement, and socioemotional reflection across different countries (Spain, Poland, Cuba, and Thailand).
- 2. To analyze participant satisfaction regarding the use of digital platforms such as Moodle and multimedia resources, and their influence on collaborative learning and peer interaction.
- 3. To identify how the integration of emerging technologies and group dynamics facilitates the development of key socioemotional skills, including self-regulation, empathy, and resilience.
- 4. To explore students' perceptions of the transferability of these competencies to academic and professional contexts, emphasizing readiness for future challenges.
- 5. To generate evidence supporting the effectiveness of combining active pedagogies and innovative technologies for the continuous improvement of university-level socioemotional competency training.

2. METHOD

2.1. Context and Participants

The study was conducted across four different countries—Spain, Poland, Cuba, and Thailand—allowing for a cross-cultural understanding of the effectiveness of the socioemotional competence training program. A total of 481 undergraduate university students participated in the study. Participants were randomly assigned to either an experimental group, which received the training program, or a control group, which followed the standard academic curriculum without any additional intervention.

In Spain, the sample consisted of 103 participants, with 52.43% in the control group and 47.57% in the experimental group. The gender distribution was 43.69% male and 56.31% female. The mean age was 21.21 years (SD = 1.59).

In Poland, 126 participants took part, almost equally distributed between the control group (49.21%) and the experimental group (50.79%). The gender distribution was balanced (50.00% male, 50.00% female). The average age was 21.08 years (SD = 1.42).

The Cuban sample included 115 participants, with 48.70% in the control group and 51.30% in the experimental group. Of these, 51.30% were male and 48.70% female. The mean age was 21.10 years (SD = 1.42).

In Thailand, 137 participants were included, of whom 51.09% were in the control group and 48.91% in the experimental group. The gender breakdown was 45.99% male and 54.01% female, with a mean age of 20.82 years (SD = 1.31).

All participants were enrolled in teacher education programs at their respective universities and were selected to ensure comparable academic profiles and baseline socioemotional characteristics across contexts.

2.2. Instruments

The core instrument of this study is the Empowering Horizons: Active Methodologies and Emerging Technologies Program (EHA-EMT), a dynamic six-lesson curriculum designed to enhance socioemotional competencies through innovative pedagogical strategies and cutting-edge digital tools. This program integrates active learning methods with emerging technologies to foster motivation, creativity, resilience, and emotional intelligence among university students.

Lesson 1 cultivates motivation and self-determination, guiding learners towards well-being and life satisfaction.

Lesson 2 engages multiple intelligences via interactive activities, incorporating interpersonal, intrapersonal, linguistic, logical-mathematical, kinesthetic, musical, and visual-spatial domains, all facilitated through collaborative digital platforms.

Lesson 3 deepens understanding of human virtues such as integrity, compassion, resilience, wisdom, and hope, promoting teamwork and positive identity formation.

Lesson 4 develops creativity, hardiness, optimism, and talent through experiential and technology-enhanced practices.

Lesson 5 focuses on emotional self-regulation and social skills critical for personal and academic success, leveraging multimedia resources for immersive learning.

Lesson 6 encourages personalized commitment to lifelong growth by helping students design their own life and career roadmaps using digital planning tools.

The program employs active methodologies such as small-group rotations led by peer facilitators, fostering critical dialogue and collaborative problem-solving. Discussions and outputs are shared and enriched through an integrated Moodle platform, utilizing interactive concept maps, virtual murals, and other emerging technologies to maximize engagement and knowledge construction.

This instrument exemplifies the fusion of active pedagogies with technological innovation to empower cross-cultural learners in higher education contexts.

2.3. Procedure

The intervention was embedded within the academic structure of each participating university, primarily during practical class sessions of educational psychology or related courses. The experimental group followed the structured socioemotional training program, while the control group continued with standard course content without any additional socioemotional instruction.

The training program was delivered over several weeks and was supported by a virtual learning environment (VLE), such as Moodle, which provided extended access to program materials. This platform enabled interaction through discussion forums, multimedia content, online exercises, and assignment submission, fostering engagement and reinforcing the skills taught in class.

All participants completed the same baseline and follow-up assessments under standardized conditions. Instructors and researchers received training to ensure fidelity of implementation and cross-cultural consistency in the application of the program. The EHA-EMT program was implemented in the same way across all four countries, with identical content, structure, and intended socioemotional competencies. Only very minimal adaptations were made in each country, limited exclusively to the

format or context of discussion activities, in order to better align with local cultural norms and typical classroom interaction styles. These slight adjustments did not affect the objectives of the program or the specific competencies participants were expected to develop. Consequently, the core training, learning outcomes, and overall instructional approach remained fully consistent across Spain, Poland, Cuba, and Thailand, ensuring that the program's effectiveness could be meaningfully compared across countries.

3. RESULTS

The results reveal a high level of satisfaction across all four countries with the Empowering Horizons: Active Methodologies and Emerging Technologies Program (EHA-EMT), highlighting the positive reception of the integration of active learning and digital tools in socioemotional competence development.

In Spain, 89% of participants reported that the use of the Moodle platform and interactive group rotations greatly enhanced their engagement and understanding, particularly appreciating the digital concept maps and virtual murals. Satisfaction surveys showed an average score of 4.6/5 in terms of course relevance and content delivery. Many Spanish students emphasized how the technology-mediated collaborative learning fostered deeper reflection on self-determination and emotional regulation.

Polish students similarly valued the active methodologies, with 87% affirming that small-group discussions facilitated critical thinking and interpersonal skills development. They rated the technological components highly, noting that multimedia resources helped clarify abstract concepts such as creativity and resilience. The Moodle forums were reported as instrumental for sharing ideas beyond classroom hours, with 82% expressing satisfaction with the blended learning approach.

In Cuba, participants expressed enthusiasm about the program's balance between emotional intelligence training and technological innovation. 91% highlighted the positive impact of rotating peerled group discussions supported by digital tools, fostering a sense of community and inclusiveness. The use of multimedia and digital storytelling was especially appreciated for enhancing motivation and optimism.

Thailand showed the highest engagement with emerging technologies, with 93% of participants indicating that the integration of interactive digital platforms made learning more dynamic and accessible. The collaborative online activities contributed to a greater sense of belonging and improved self-management skills. Satisfaction scores averaged 4.7/5, with many students pointing out that the innovative methodologies helped bridge cultural differences and promoted empathy.

Across all countries, the perceived impact extended beyond personal growth, with 88% of participants agreeing that the program strengthened academic performance and future professional readiness. The active use of emerging technologies alongside peer collaboration was repeatedly mentioned as a key factor enabling these outcomes.

These findings underscore the effectiveness of combining active pedagogies with technological innovation in higher education, fostering socioemotional competencies critical for personal, academic, and professional success.

Table 1. Satisfaction levels of participants with the integration of active methodologies and emerging technologies (%)

Country	Very Satisfied	Satisfied	Neutral	Dissatisfied	Very Dissatisfied	Average Score (1-5)
Spain	62	27	8	3	0	4.6
Poland	59	28	10	3	0	4.5
Cuba	68	23	6	3	0	4.7
Thailand	70	23	5	2	0	4.7

Table 2. Perceived impact of active methodologies and technologies on personal, academic, and professional spheres (%)

Country	Personal Growth	Academic Performance	Future Professional Readiness
Spain	85	79	83
Poland	82	78	80
Cuba	88	84	86
Thailand	90	85	<u>89</u>

Table 3. Participant engagement with digital tools and collaborative learning (%)

Country	Active Participation in Group Discussions	Use of Digital Platforms (Moodle, Forums)	Use of Multimedia Resources
Spain	88	91	87
Poland	86	85	82
Cuba	90	88	85
Thailand	92	94	90

The data presented in Tables 1, 2, and 3 collectively demonstrate the strong positive reception and multifaceted impact of the *EHA-EMT* program across all participating countries. High satisfaction scores (Table 1) correlate with active engagement in both collaborative discussions and the use of digital learning platforms (Table 3), indicating that emerging technologies effectively complement active methodologies to enhance the learning experience. Moreover, the broad perception of benefits spanning personal development, academic achievement, and professional preparedness (Table 2) underscores the program's holistic contribution to fostering socioemotional competencies essential for success in the 21st century. These convergent findings validate the program's integrated approach, highlighting its potential as a model for future educational innovations.

Finally, to further examine cross-country differences, ANOVAs were conducted on key outcome measures, including satisfaction, engagement with digital tools and collaborative learning, and per-

ceived impact on personal growth, academic performance, and future professional readiness. Results indicated **no significant differences** among Spain, Poland, Cuba, and Thailand in average satisfaction scores (F(3, 477) = 1.12, p = .34), engagement with group discussions (F(3, 477) = 1.45, p = .23), use of digital platforms and multimedia resources (F(3, 477) = 1.45, p = .23), or perceived impact across personal, academic, and professional domains (F(3, 477) = 1.45), all P > .20). These findings confirm that the **positive effects of the EHA-EMT program are consistent across all four countries**, supporting its cross-cultural applicability and effectiveness in fostering socioemotional competencies in higher education.

4. DISCUSSION AND CONCLUSIONS

The results of the Empowering Horizons: Active Methodologies and Emerging Technologies (EHA-EMT) program demonstrate a consistently high level of participant satisfaction across Spain, Poland, Cuba, and Thailand. This positive reception highlights the effectiveness of combining active learning methodologies with emerging digital technologies in fostering socioemotional competencies. These findings align with prior research that underscores the role of active pedagogies and technology integration in enhancing student engagement, motivation, and deeper learning (Hucalinas, 2025; Kocsis & Pusztai, 2025; Manninen et al., 2025; Mirzoyan et al., 2024).

In Spain, the strong appreciation for the Moodle platform and digital resources such as concept maps and virtual murals supports earlier studies that emphasize the importance of digital tools in promoting collaborative learning and reflection on emotional regulation and self-determination. Similarly, Polish participants' positive feedback on small-group discussions and multimedia resources resonates with the evidence that active peer interactions combined with multimedia elements improve critical thinking and interpersonal skills (Malinovskiy et al., 2024; Pozo-Rico et al., 2020; Santama-ría-Villar et al., 2021)

The Cuban cohort's enthusiasm for peer-led discussions and digital storytelling reflects the potential of technology-mediated learning environments to build community and inclusivity, which echoes findings from research on socioemotional learning frameworks in diverse cultural contexts (Galván et al., 2024; Gilar-Corbi et al., 2019; Smith et al., 2024). Meanwhile, the particularly high engagement seen in Thailand—with 93% satisfaction linked to interactive platforms—reinforces the growing body of literature showing that emerging technologies can enhance accessibility, cross-cultural empathy, and learner autonomy (Anicic et al., 2025; Tsalikova & Pakhotina, 2019; Vázquez-Rodríguez et al., 2025).

Furthermore, across all countries, the perceived impact of the program transcended personal development, with the majority of participants acknowledging improvements in academic performance and professional readiness (Khalil & Liu, 2021; Layne et al., 2024; Wang et al., 2022). This supports the notion that socioemotional skills, when cultivated through innovative methodologies and technology, are crucial for holistic success in higher education and beyond (Layne et al., 2024; Lovin & Savu, 2025; Vinichenko et al., 2018).

The data presented in Tables 1, 2, and 3 corroborate these conclusions, illustrating the widespread use and positive perception of digital tools, the effectiveness of blended learning environments, and the recognized contribution of socioemotional competence development to academic and professional growth. The synergy between emerging technologies and active methodologies emerges as a key factor driving these outcomes.

Despite the overall success and highly positive outcomes of the EHA-EMT program, the implementation process revealed several context-specific considerations that provide insights for potential improvements. In Spain, sustaining student motivation throughout sessions that combined digital tools and collaborative tasks required careful attention, which was addressed through interactive activities and frequent feedback; future iterations could include additional engagement strategies, such as gamified elements or brief motivational exercises, to further enhance participation. In Poland, students were accustomed to structured learning approaches, which meant that activities encouraging open-ended problem-solving and collaborative creativity needed careful scaffolding to ensure full engagement; future implementations could provide early orientation sessions focused on collaborative experimentation and creative thinking to facilitate a smoother adaptation. In Cuba, frequent electricity outages necessitated flexible scheduling, with activities often conducted during periods when power was available; providing offline materials and adaptable digital resources could further strengthen resilience against such interruptions in future implementations. In Thailand, the educational culture emphasizes high expectations and discipline, which initially required balancing structured engagement with activities promoting reflection, experimentation, and peer collaboration; future programs could incorporate explicit guidance and supportive scaffolding to foster autonomy while respecting local norms.

Importantly, despite these context-specific considerations, the program was successfully implemented across all four countries, achieving high levels of satisfaction, engagement, and perceived impact. Addressing these factors in future iterations could enhance program efficiency and accessibility, ensuring that socioemotional competencies continue to be effectively developed through active methodologies and emerging technologies in diverse educational settings.

In conclusion, this study reinforces the critical importance of integrating emerging technologies with active pedagogical strategies to foster socioemotional learning. Such integration not only enhances student engagement and satisfaction but also equips learners with essential skills for personal growth, academic achievement, and future professional success. Future research should continue exploring tailored interventions in diverse cultural settings, leveraging the potential of digital innovation to bridge educational gaps and promote inclusive learning environments.

5. REFERENCES

- Anicic, K. P., Divjak, B., & Ferns, S. J. (2025). The role of employers in the assessment process in WIL: Students' and employers' perspectives. *Industry and Higher Education*. https://doi.org/10.1177/09504222251316340
- Bell, M. A., Cake, M. A., King, L. T., & Mansfield, C. F. (2022). Identifying the capabilities most important for veterinary employability using a modified Delphi process. *Veterinary Record*, 190(7). https://doi.org/ARTN e77710.1002/vetr.777
- Berdrow, I., Bird, A., Woolford, S., & Skaletsky, M. (2025). Enhancing intercultural effectiveness: the efficacy of international education experiences. *Journal of International Education in Business*. https://doi.org/10.1108/Jieb-11-2023-0088
- Çakmak, B. Y., & Yigit, B. (2024). Where Should a New Graduate Start? A Multi-Source Evaluation of the Banking Sector Business Analyst Signals in an Emerging Economy. *Istanbul Business Research*, *53*(1), 61-80. https://doi.org/10.26650/ibr.2024.53.1208513

- Cseh, M., Crocco, O. S., Engel, L., & Follman, J. (2025). Preparing a Globally Competent Workforce: A Mixed Methods Study of an Innovative Co-Curricular University Program. *Advances in Developing Human Resources*, *27*(1), 5-26. https://doi.org/10.1177/15234223241296186
- Chernobay, E. V., & Lytaeva, M. A. (2024). Who an Instructional Designer Is: A Competency Profile and the Choice of a Training Model Elena Chernobay, Maria Lytaeva. *Voprosy Obrazovani-ya-Educational Studies Moscow*(3), 338-367. https://doi.org/10.17323/vo-2024-18126
- Fertig, J., O'Neill, B. S., Wells, P., & Bassil, C. B. (2022). Who they are versus what they want: How dominance, influence, steadiness, and compliance profiles can aid in developing employability. *Industry and Higher Education*, *36*(6), 795-806. https://doi.org/10.1177/09504222211070950
- Galván, J. R. V., López, O. D., & González, E. (2024). Analysis of the General Skills of Graduates in Environmental Sciences: The View of Students, Teachers and Employers. *International Journal of Engineering Pedagogy*, *14*(6), 93-108. https://doi.org/10.3991/ijep.v14i6.48595
- Gerritsen, S., Pak, K., Darouei, M., Akkermans, J., & van der Heijden, B. (2024). Building a sustainable career during the initial transition to work: a multiple-stakeholder perspective on proactive behaviors and contextual factors. *Career Development International*, 29(7), 749-769. https://doi.org/10.1108/Cdi-03-2024-0096
- Gilar-Corbi, R., Pozo-Rico, T., Sánchez, B., & Castejón, J. L. (2019). Can emotional intelligence be improved? A randomized experimental study of a business-oriented EI training program for senior managers. *Plos One*, *14*(10). https://doi.org/ARTN e022425410.1371/journal.pone.0224254
- Hays, R. B. (2024). Purposeful design in health professions' curriculum development. *Medical Teacher*, 46(12), 1532-1538. https://doi.org/10.1080/0142159X.2024.2359974
- Hucalinas, M. C. (2025). Performance of the Teacher Education Graduates in A State University. *International Journal of Instruction*, 18(2), 381-394. https://doi.org/10.29333/iji.2025.18221a
- Jia, Y., Zheng, X. J., Peng, Z. F., & Xia, S. Y. (2024). Main competencies of future coaches: investigation and effectiveness of development within the tuning project in higher education in China. *Bmc Medical Education*, 24(1). https://doi.org/ARTN 89910.1186/s12909-024-05906-0
- Jiang, X., & Wang, H. (2025). A study on the impact of mentoring on the employment of postgraduate students in Chinese colleges. *Frontiers in Education*, *10*. https://doi.org/Artn 147090210.3389/Feduc.2025.1470902
- Khalil, H., & Liu, C. J. (2021). Design and Implementation of a Contemporary Health Administration Program for Health Managers. *Frontiers in Public Health*, *9*. https://doi.org/Artn 73505510.3389/Fpubh.2021.735055
- Kirova, M., & Yordanova, D. (2024). Training of Personnel for Industry 5.0 through University Clubs Following the Example of the University of Ruse. *Strategies for Policy in Science and Education-Strategii Na Obrazovatelnata I Nauchnata Politika*, 32(3), 61-71. https://doi.org/10.53656/str2024-3s-6-tra
- Kocsis, Z., & Pusztai, G. (2025). The Role of Higher Education Through the Eyes of Hungarian Undergraduate Students and Graduates: A Qualitative Exploratory Study. *International Journal for Research in Vocational Education and Training-Ijrvet*, *12*(1), 48-75. https://doi.org/10.13152/IJRVET.12.1.3
- Layne, D., Hudgins, T., Kusch, C. E., & Lounsbury, K. (2024). An Imperative Responsibility in Professional Role Socialization: Addressing Incivility. *Journal of Academic Ethics*, *22*(4), 715-733. https://doi.org/10.1007/s10805-024-09524-9

- Lovin, D., & Savu, C. V. (2025). The Impact of Skills, Competences, Knowledge and Personal Traits Acquired by Students on Standard of Living and Job Satisfaction: The Situation of Graduates of Physical Education and Sports Faculties in Romania. *Sustainability*, 17(10). https://doi.org/Artn 459810.3390/Su17104598
- Malinovskiy, S. S., Shibanova, E. Y., & Maslova, E. A. (2024). What Is the Difference between a "Top" and a "Rather Prestigious" University? Career Expectations of Students of Leading and Non-Selective Universities Sergey Malinovskiy, Ekaterina Shibanova, Ekaterina Maslova. *Voprosy Obrazovaniya-Educational Studies Moscow*(3), 171-210. https://doi.org/10.17323/vo-2024-18619
- Manninen, H., Lehtimäki, H., Kilpeläinen, R., Lautanen, E., & Kärhä, K. (2025). The qualifications and competence in supervisory and management skills among experienced mid-career Finnish forestry professionals. *Scandinavian Journal of Forest Research*, 40(2), 138-151. https://doi.org/10.1080/02827581.2025.2483335
- Merolli, M., Vallance, P., McCreesh, K., O'Sullivan, C., Ahmed, O., Kerry, R., . . . Gray, K. (2025). Entrustable professional activities for physiotherapists to demonstrate digital health competency: an international delphi study. *Physiotherapy Theory and Practice*. https://doi.org/10.1080/09593985.2025.2495130
- Mirzoyan, A. G., Suslova, I. P., & Govorova, A. V. (2024). Relationship between Soft Skills and Academic Outcomes in Higher Education: Evidence from Undergraduate Management Students. Voprosy Obrazovaniya-Educational Studies Moscow(4), 151-183. https://doi.org/10.17323/vo-2024-17879
- Nam, B. H., & English, A. S. (2025). Collective Resilience and Coping Mechanisms Among International Faculty Members Amid Snap Lockdowns During the Delta and Omicron Variant Outbreaks in East China. *Psychological Reports*, *128*(2), 744-771. https://doi.org/10.1177/00332941231166614
- Peifer, J., Taasoobshirazi, G., & Meyer-Lee, E. (2023). Longitudinal growth in college student self-efficacy and intercultural competence attenuated by anxiety/depression. *Frontiers in Education*, 8. https://doi.org/Artn 126119210.3389/Feduc.2023.1261192
- Piróg, D., & Hibszer, A. (2023). Which Skills are the Most Prized? Analysing Monetary Value of Geographers' Skills on the Labour Market in Six European Countries. *Quaestiones Geographicae*, 42(4), 63-79. https://doi.org/10.14746/quageo-2023-0035
- Pozo-Rico, T., Gilar-Corbí, R., Izquierdo, A., & Castejón, J. L. (2020). Teacher Training Can Make a Difference: Tools to Overcome the Impact of COVID-19 on Primary Schools. An Experimental Study. *International Journal of Environmental Research and Public Health*, *17*(22). https://doi.org/Artn 863310.3390/Ijerph17228633
- Pozo-Rico, T., Gilar-Corbí, R., Lorenzo-Lledó, A., Lorenzo-Lledó, G., & Sánchez, B. (2019). Level of Satisfaction with the Advanced Training Programme on Emotional Competence across E-Learning System in Higher Education. *13th International Technology, Education and Development Conference (Inted2019)*, 614-614. <Go to ISI>://WOS:000536018100100
- Pozo-Villafuerte, D. D., & Villacís-Miranda, A. (2025). Enhancing Labor Market Intelligence in Ecuador: A Framework for Generating, Standardizing and Analyzing Job Demand Data. *Computational Economics*. https://doi.org/10.1007/s10614-025-10935-y
- Rasi, M., Hanssen, T. A., Norbye, B., Mikkonen, K., & Kvande, M. E. (2024). Critical care nurses' competence in mentoring students in intensive care units-A A cross-sectional study. *Nurse*

- Education Today, 141. https://doi.org/Artn 10632210.1016/J.Nedt.2024.106322
- Sandoval-Palis, I., Naranjo, D., Gilar-Corbi, R., & Pozo-Rico, T. (2020). Neural Network Model for Predicting Student Failure in the Academic Leveling Course of Escuela Politecnica Nacional. *Frontiers in Psychology*, 11. https://doi.org/Artn 51553110.3389/Fpsyg.2020.515531
- Santamaría-Villar, M. B., Gilar-Corbi, R., Pozo-Rico, T., & Castejón, J. L. (2021). Teaching Socio-Emotional Competencies Among Primary School Students: Improving Conflict Resolution and Promoting Democratic Co-existence in Schools. *Frontiers in Psychology*, *12*. https://doi.org/Artn 65934810.3389/Fpsyg.2021.659348
- Smith, S., Dupre, K., & Crough, J. (2024). Beyond the hard and soft skills paradigm: an Australian architecture industry perspective on employability and the university/practice divide. *Higher Education Skills and Work-Based Learning*, *14*(6), 1282-1298. https://doi.org/10.1108/Hes-wbl-07-2023-0197
- Tekle, A., Areaya, S., & Habtamu, G. (2025). Stakeholders' perceptions of occupational competency assessment and certification systems in Ethiopia's TVET programs. *Higher Education Skills and Work-Based Learning*, *15*(2), 274-289. https://doi.org/10.1108/Heswbl-02-2024-0030
- Tsalikova, I. K., & Pakhotina, S. V. (2019). Scientific Research on the Issue of Soft Skills Development (Review of the Data in International Databases of Scopus, Web of Science). *Obrazovanie I Nauka-Education and Science*, *21*(8), 187-207. https://doi.org/10.17853/1994-5639-2019-7-187-207
- Tsukanova, N., Kanosa, N., Hordiichuk, M., Popovych, O., & Kotelianets, N. (2023). The transformation of the training of preschool educators in the digital age. *Amazonia Investiga*, *12*(72), 31-44. https://doi.org/10.34069/Ai/2023.72.12.3
- Tumpa, R. J., Skaik, S., Ham, M., & Chaudhry, G. (2023). Enhancing project management graduates' employability through group assessment innovations: An empirical study. *Project Leadership and Society*, 4. https://doi.org/Artn 10008410.1016/J.Plas.2023.100084
- Vallis, C. J., Nguyen, H. T., & Norman, A. (2024). Cross-cultural adaptation of educational design patterns at scale. *Journal of Work-Applied Management*, 16(2), 253-268. https://doi.org/10.1108/Jwam-10-2023-0106
- Vasylyshyna, N., Boryn, G., Ponomarova, M., Sarkisian, T., Gomolska, L., Kupin, A., & Holinska, T. (2023). Involving Ukrainian University Students in English-Language Multicultural Events and Projects in the Conditions of Global International Educational Cooperation within the Framework of the Tasks of Intercultural Psychology and Features of Brand Communications in Higher School Education. *Ad Alta-Journal of Interdisciplinary Research*, 13(2), 112-119. <Go to ISI>://WOS:001107543900024
- Vázquez-Rodríguez, A., Quiroga-Carrillo, A., García-Alvarez, J., & Sáez-Gambín, D. (2025). Soft skills and the corporate social dimension: the perspective of university graduate employers. *Educational Research for Policy and Practice*. https://doi.org/10.1007/s10671-025-09395-w
- Vinichenko, M. V., Chulanova, O. L., Oseev, A. A., Bogdan, E. S., Makushkin, S. A., & Grishan, M. A. (2018). Interaction Of The Higher Education And Key Employer For The Formation Of The Actual Profile Of The Competences Of Graduates Of Engineering Directions. *Modern Journal of Language Teaching Methods*, 8(5), 394-404. <Go to ISI>://WOS:000432679600027
- Wang, H. Y., Li, S., Qin, P. F., & Xing, F. (2022). The Employability of Graduates of National Characteristic Discipline Programs of Study in China: Evidence from Employers. *Sustainability*, 14(13). https://doi.org/Artn 795510.3390/Su14137955

- Wut, T. M., Chan, E. A. H., Wong, H. S. M., & Chan, J. K. Y. (2025). Perceived artificial intelligence literacy and employability of university students. *Education and Training*, 67(2), 258-274. https://doi.org/10.1108/Et-06-2024-0272
- Yusuf, A. O., Leal, A. N., Akanmu, A. A., Murzi, H., Shojaei, A., & Agee, P. (2024). Usability Evaluation of a Web-Based Platform for Connecting Professional and Educational Communities: Instructors' Perspective. *Construction Research Congress 2024: Health and Safety, Workforce, and Education*, 293-303. <Go to ISI>://WOS:001196834200030

13. ChatGPT y lengua árabe: explorando la integración de la IAG en la expresión escrita¹

Ramos López, Fernando; García Cecilia, Cristina

Departamento de Filologías Integradas, Universidad de Alicante

RESUMEN

La expresión escrita en lengua extranjera es un proceso complejo que implica competencias lingüísticas, habilidades cognitivas y estrategias metacognitivas de autorregulación. En árabe, la redacción formal presenta dificultades relacionadas con el léxico, la gramática y las normas sociolingüísticas del árabe estándar. Estudios en inteligencia artificial generativa (IAG), especialmente ChatGPT, han abierto nuevas posibilidades pedagógicas para la enseñanza y aprendizaje de idiomas. Este trabajo explora el potencial didáctico de ChatGPT en la mejora de la escritura formal en árabe como lengua extranjera. Para ello, se diseñó una actividad en la que los estudiantes redactaron un correo electrónico formal y emplearon ChatGPT en la fase de revisión. Los resultados muestran que la IAG puede proporcionar mejoras lingüísticas importantes y, si se integra de forma crítica y planificada, puede promover procesos de escritura más reflexivos y autorregulados, proporcionar retroalimentación personalizada y fomentar la autonomía y la motivación del alumnado. Este trabajo explora un marco pedagógico que integre la IAG como herramienta de apoyo eficaz y que potencie las estrategias metacognitivas del estudiante para lograr un aprendizaje significativo.

PALABRAS CLAVE: ChatGPT, aprendizaje de lenguas, lengua árabe, expresión escrita.

1. INTRODUCCIÓN

La expresión escrita en lenguas extranjeras es un proceso complejo que requiere integrar simultáneamente conocimientos lingüísticos (corrección gramatical, cohesión, coherencia, adecuación, variación, presentación), habilidades cognitivas (planificar, textualizar y revisar) y actitudes adecuadas para redactar un texto eficaz. Elemento fundamental es el mecanismo metacognitivo de autorregulación, que permite al estudiante tomar conciencia de su proceso de escritura y reajustarlo activamente (Cassany, 2009). En el caso del árabe, la expresión escrita presenta desafíos adicionales, especialmente cuando se trata de redactar textos de carácter formal, debido a la ortografía, el vocabulario, las estructuras lingüísticas y las normas culturales y sociolingüísticas propias del árabe estándar frente al coloquial y al dialectal (Saleh: 2003; Martí: 2012).

La inteligencia artificial generativa ha abierto nuevas posibilidades pedagógicas en la enseñanza y aprendizaje de idiomas. En el contexto específico del árabe, ha supuesto un gran salto cualitativo con relación a las TIC y a modelos de inteligencia artificial anteriores. Si bien algunas herramientas de traducción y reconocimiento de voz ya ofrecían oportunidades, no es hasta el lanzamiento público de

¹ El presente trabajo ha contado con una ayuda del Programa de Redes de investigación en docencia universitaria del Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2023-25). Ref.: 5960.

ChatGPT 3.5 en 2022, cuando la lengua árabe se ve plenamente potenciada. ChatGPT brinda ahora al árabe posibilidades específicas como el reconocimiento de la escritura a mano (útil para practicar letras y uniones correctas), la vocalización automática (dada la ausencia general de diacríticos en los textos), el análisis exhaustivo de raíces y patrones morfológicos, el reconocimiento de voz optimizado, distinguiendo incluso rasgos dialectales (Al-Feky y Kaddum, 2024).

En este nuevo contexto educativo, y en línea con trabajos recientes, pensamos que es pertinente implementar actividades didácticas que integren la IAG en la enseñanza del árabe, con el fin de explorar el alcance de su utilidad y evaluar su eficacia. Numerosos estudios (Alharbi, 2023; Blanco, 2024; Karataş, 2024; Nazari et al., 2021; Ribes y Navarro, 2023; Solak, 2024) destacan el potencial transformador de la IAG en el ámbito del aprendizaje de idiomas porque puede contribuir a mejorar la calidad de la escritura, ofreciendo retroalimentación inmediata, precisa, objetiva y personalizada; asistencia en cualquier momento y lugar; reforzando la autonomía del estudiante en ausencia del docente; motivando al alumnado a revisar sus textos, a asumir la responsabilidad de su progreso y transitar hacia un aprendizaje más autorregulado, o contribuyendo a personalizar el aprendizaje (Serrano y Moreno, 2024). Además, el uso de herramientas de inteligencia artificial puede promover emociones positivas como el disfrute, la confianza y la sensación de logro, y reducir emociones negativas como el miedo al error, lo que favorece un compromiso más profundo y significativo con el aprendizaje (Nazari et al., 2021). Al mismo tiempo, se ponen de manifiesto debilidades de la IAG: limitaciones para manejar la complejidad lingüística o falta de precisión en la retroalimentación en contextos complejos (Mohideen, 2024; Samin y Osman, 2024); desafíos como el acceso desigual, el sesgo y resultados potencialmente discriminatorios (Nur et al., 2024), y riesgos en el uso: dependencia de la tecnología, falta de autenticidad de la escritura y plagio, con consecuencias como la reducción de la motivación hacia un aprendizaje profundo (Sulaeman et al., 2024).

El uso de la IAG requiere un enfoque crítico y equilibrado, y su potencial reside en cómo se integre pedagógicamente. La IAG debe entenderse como un asistente, no como un sustituto del pensamiento propio (Yatri et al., 2023). Es fundamental promover la autorregulación del estudiante, la revisión reflexiva y el control consciente del proceso de aprendizaje. De acuerdo con Cerezo y Yanguas (2024), para fomentar la autonomía es necesaria la instrucción metacognitiva. El docente debe plantear actividades que fomenten la resolución de problemas y la toma de decisiones, con el fin de que los estudiantes aprendan a interactuar con la IAG para generar nuevo conocimiento de acuerdo con sus propias características (Chávez, 2023). Según la UNESCO (Sabzalieva y Valentini, 2023), la IA es simplemente una herramienta que debe utilizarse como complemento en el entorno educativo, con el fin de potenciar eficientemente los procesos de enseñanza y aprendizaje y la formación de los estudiantes, preparándolos para el entorno laboral.

Este estudio pretende explorar en qué medida ChatGPT es una herramienta útil en la mejora de la expresión escrita en árabe, y si favorece el desarrollo de un aprendizaje significativo y autorregulado. Para ello, hemos implementado una actividad didáctica de expresión escrita que integra el uso de ChatGPT en la fase de revisión de la escritura. Este trabajo ha puesto de manifiesto hallazgos, como la escasa experiencia del alumnado con la IAG para fines educativos o los diversos tipos de interacción estudiante-ChatGPT, que son objeto de análisis y discusión en páginas siguientes, y que nos orientarán en el diseño de actividades de enseñanza y aprendizaje del árabe que integren la IAG en determinados momentos del proceso.

2. MÉTODO

En la línea de trabajos consultados, presentamos un estudio de carácter mixto con datos cuantitativos y cualitativos derivados de dos cuestionarios, inicial y final, y del análisis del contenido de las producciones del alumnado y su interacción con ChatGPT, a partir de la actividad didáctica implementada. La actividad consistió en la redacción de un correo electrónico formal dirigido a un centro de idiomas en un país árabe solicitando información detallada sobre su oferta de cursos de lengua árabe para extranjeros.

2.1. Descripción del contexto y de los participantes

La actividad se llevó a cabo durante el curso académico 2024-25 en las asignaturas Lengua Árabe: Intermedio II (nivel A2) y Lengua Árabe: Intermedio IV (nivel B1) del Grado en Estudios Árabes e Islámicos de la Universidad de Alicante. El alumnado, 15 estudiantes, tenía edades comprendidas entre los 20 y 51 años y distintas lenguas maternas: castellano, valenciano, inglés, chino y árabe dialectal magrebí.

2.2. Instrumentos

Para llevar a cabo nuestro estudio, hemos diseñado una actividad educativa que contempla competencias lingüística, comunicativa, intercultural y digital, objetivos de aprendizaje, contenidos relacionados con la tarea, rol del docente y el estudiante, uso de la IAG y evaluación formativa. Y para implementarla hemos utilizado los siguientes instrumentos:

- 1. Cuestionario inicial. Preguntas agrupadas en tres dimensiones: 1) Conocimiento previo de la IAG: grado, experiencia de uso y herramientas utilizadas. 2) Utilización de la IAG como herramienta de aprendizaje: actividades, frecuencia de uso, fiabilidad, calidad y necesidad de verificación de resultados, y formulación de *prompts*. y 3) Actitud hacia el empleo de la IAG en la formación académica: interés, motivación, expectativas, uso ético y eficaz, y riesgos.
- 2. Cuestionario final. Preguntas agrupadas en cuatro dimensiones: 1) Datos del alumnado sobre edad, perfil lingüístico y académico. 2) Implementación de la actividad: claridad de las instrucciones proporcionadas para realizar la actividad, utilidad de la retroalimentación del profesor, facilidad para interactuar con el asistente de ChatGPT y reformulación de los *prompts*. 3) Ayuda prestada por el asistente de ChatGPT en la versión mejorada del texto: ideas ofrecidas, identificación de errores, sugerencias sobre vocabulario, fórmulas apropiadas, conectores, así como explicaciones sobre aspectos gramaticales, distinción de registro y organización del contenido. 4) Balance de la actividad y sensación de aprendizaje: contribución de la IAG en la mejora de la expresión escrita en árabe, gestión de errores, eficacia de la inmediatez de la retroalimentación dada por la IAG, aumento de la confianza a la hora de escribir en árabe, motivación y autonomía.

Ambos cuestionarios incluyen preguntas abiertas y preguntas cerradas que evalúan el grado de acuerdo de los participantes con los ítems contemplados, empleando la escala Likert de cinco niveles, entre "nada de acuerdo" y "totalmente de acuerdo".

- 3. Instrucciones al alumnado, con pasos detallados para realizar la actividad.
- 4. Rúbrica de evaluación lingüística de la producción escrita, con diez ítems: 1) Adecuación a la tarea y propósito comunicativo, 2) Pertinencia y claridad del contenido, 3) Organización y estructura del texto, 4) Cohesión y coherencia textual. Fluidez, 5) Uso de vocabulario y riqueza léxica, 6) Co-

rrección gramatical, 7) Registro y estilo (formalidad/informalidad), 8) Ortografía, 9) Puntuación, 10) Extensión.

- 5. Asistente ChatGPT "LAIA2325 Expresión escrita", configurado con instrucciones relativas al contexto educativo específico, el rol de asesor lingüístico, el tono de formalidad y el formato de respuestas en forma de recomendaciones explicadas y argumentadas, y alimentado con las guías docentes de las asignaturas, descriptores de nivel del MCER, contenidos gramaticales y modelos textuales.
- 6. Criterios de valoración de las interacciones estudiante-asistente ChatGPT, basados en tres categorías de análisis: 1) Comparativa general de las dos versiones, 2) Evidencias de mejoras lingüísticas observadas, 3) Análisis de la interacción con el asistente.

2.3. Procedimiento

La actividad se ha desarrollado en ocho fases. Conocido el bagaje del alumnado en el uso de la IAG mediante el cuestionario inicial, procedimos a plantear la actividad en clase: explicación de los objetivos perseguidos y pasos a seguir para realizar la tarea. Les proporcionamos la estructura de un correo electrónico formal y la rúbrica de evaluación. Seguidamente, como actividad no presencial, los estudiantes redactaron la primera versión del correo empleando sus propios recursos, sin apoyo de la IAG. Dimos la retroalimentación personalizada siguiendo la rúbrica de evaluación, con sugerencias de mejora. En clase, de cara a elaborar la versión mejorada, orientamos al alumnado sobre cómo elaborar *prompts* adecuados para interactuar eficazmente con el asistente de ChatGPT, y les encargamos llevar a cabo el proceso de reescritura poniendo en marcha tanto las destrezas lingüísticas como las metacognitivas. Realizadas las versiones mejoradas, pasamos a los estudiantes el cuestionario final para que valoraran la actividad realizada y expresaran sus percepciones sobre esta experiencia de aprendizaje. Finalmente, procedimos al análisis de los resultados arrojados por los distintos instrumentos y al balance global de la actividad de innovación educativa.

3. RESULTADOS

Resultados del cuestionario inicial

El alumnado participante en la actividad considera su conocimiento previo de la IAG moderado bajo (escala Likert: 2.75), y la frecuencia de uso, moderada (3.00). Han utilizado la IAG como herramienta de aprendizaje en alguna asignatura, de forma autónoma, sin la guía del docente, para buscar información, hacer resúmenes y elaborar apuntes, en ningún caso para practicar idiomas, siendo ChatGPT la aplicación más utilizada. Ningún estudiante conoce el concepto de *prompt*. La actitud hacia el uso de la IAG en su formación se sitúa en un nivel moderadamente favorable (3.2). El potencial motivador de la herramienta se percibe como bajo (2.4). El alumnado manifiesta consenso sobre la importancia de aprender a utilizar la IAG de manera adecuada, eficaz y ética (3.8). Todos reconocen riesgos potenciales como el plagio, la dependencia, la falta de originalidad, la reducción del esfuerzo y el aprendizaje superficial.

Resultados del ejercicio de expresión escrita

El análisis de la tarea de redacción asistida por ChatGPT nos ha permitido observar distintos modos de interacción estudiante-IAG. La comparación de las versiones iniciales y finales de los textos, junto

con la revisión de los diálogos mantenidos con el asistente, ha puesto de relieve perfiles diferenciados de uso de la IAG. Partiendo de cuatro dimensiones clave: naturaleza de la interacción, nivel de apropiación de las sugerencias, desarrollo de estrategias metacognitivas y actitud del estudiante ante la herramienta, identificamos tres perfiles: estratégico, pasivo y mixto.

Perfil 1: uso estratégico de ChatGPT.

- 1. Comparativa general de las versiones:
 - Versión inicial: Presenta un texto funcional, comprensible y con la estructura básica (saludo, presentación, contenido, despedida), aunque muy esquemático: se limita a una enumeración de preguntas sin desarrollo, con un tono más oral que escrito, sin recursos de cohesión textual ni cortesía formal adecuada.
 - Versión final, tras la interacción con el asistente: Redacción más extensa conforme al encargo, con desarrollo argumentado, registro formal adecuado, uso de conectores discursivos, mejora léxica y ampliación del contenido conforme al propósito comunicativo de solicitar información detallada para inscribirse en un curso.
- 2. Muestras de mejoras lingüísticas.

Comparando ambas versiones observamos mejoras en las siguientes categorías:

Tabla 1. Categorización, descripción y muestras de mejoras lingüísticas observadas.

Categoría	Descripción	Muestra
Adecuación al género	Incorpora fórmulas de cortesía propias del árabe normativo, coherentes con el destinatario.	مرحبًا" ← "حضرة المسؤول المحترم،" "تحية طيبة وبعد،
2. Coherencia y cohesión	Reorganiza el texto en párrafos bien estructurados. Incorpora conectores y otros mecanismos de cohesión.	Uso de apertura y cierre. Secciones diferenciadas. بالإضافة إلى ذلك، أخيرًا، ثانيًا
3. Corrección gramatical	Corrige errores gramaticales y ortográficos.	أريد اتعلم" → "أريد أن أتعلم"
4. Alcance y precisión léxica	Sustituye el léxico genérico por términos más precisos.	ممكن تعطوني تفاصيل عن ← "هل يمكنكم" "تزويدي بمعلومات عن
5. Ampliación informativa	Desarrolla consultas con detalles adicionales.	Añade preguntas sobre horarios, certificados, requisitos para inscripción.

3. Análisis de la interacción con el asistente.

El diálogo con ChatGPT revela un uso estratégico y autónomo de la herramienta. La estudiante:

- Formula prompts claros y contextualizados desde el inicio ("tengo que elaborar un correo...", "este es el esquema que hice...").
- Explica sus necesidades metalingüísticas ("me gustaría recibir sugerencias para mejorar...",
 "no quiero que redactes por mí, necesito ejemplos clasificados...").
- Solicita apoyo progresivo y específico: saludos → cuerpo → conectores → revisión.
- Valida sus elecciones lingüísticas con la IAG antes de escribir la versión final.

Perfil 2: uso pasivo de ChatGPT.

- 1. Comparativa general de las versiones:
 - Versión inicial: El texto sigue la estructura básica (saludo, presentación, contenido, despedida), pero presenta un estilo conversacional y fragmentado, con frases breves y preguntas en lista. Contiene expresiones dialectales, errores morfosintácticos, escasa cohesión y formulación deficiente de oraciones.
 - Versión final, tras la interacción con el asistente: La redacción se ajusta a un registro normativo, formal y coherente. Se organiza en párrafos temáticos, con desarrollo explicativo, uso de fórmulas de cortesía, conectores, vocabulario apropiado, corrección gramatical y cierre adecuado. La versión se ajusta a los objetivos discursivos del encargo.
- 2. Muestras de mejoras lingüísticas.

Comparando ambas versiones observamos mejoras en las siguientes categorías:

Tabla 2. Categorización, descripción y muestras de mejoras lingüísticas observadas.

Categoría	Descripción	Muestra
1. Adecuación al género	Sustituye expresiones coloquiales y dialectales por fórmulas formales. Incorpora saludos y despedidas adecuadas.	شو لازم؟ → ''ما المتطلبات؟'' سلام عليكم → ''حضرة إدارة المعهد المحترم'' ''تحية → مع فائق الاحترام والتقدير
2. Coherencia y cohesión	Reestructura listas en párrafos temáticos con conectores.	بالإضافة إلى ذلك كما أود أن أستعلم
3. Corrección gramatical	Corrige errores gramaticales y ortográficos.	انا احب اللغه العربي – لدي اهتمام كبير باللغة العربية شو الكتب تستخدم – أرجو منكم تزويدي بمعلومات عن المواد التعليمية مثل الكتب
4. Alcance y precisión léxica	Usa términos más ricos y adecuados al ámbito académico.	كم درس في اليوم → عدد الحصص اليومية··
5. Ampliación informativa	Incluye más datos personales y académicos de forma estructurada.	أنا (اسم علم)، عندي ١٢ سنه وأنا اسبانيه. ادرس في جامعة" اليكانتي، السنه الثانيه — اسمي (اسم علم)، أنا طالبة إسبانية في الحادي والعشرين من عمري. أدرس حاليا في السنة الثانية من درجة البكالوريوس في الدراسات العربية والإسلامية في جامعة أليكانتي.

3. Análisis de la interacción con el asistente.

El diálogo con ChatGPT manifiesta un enfoque orientado al producto. La estudiante:

- Utiliza literalmente la retroalimentación del docente como prompt ("Das muy poca información personal y académica, y lo haces de forma excesivamente directa e informal").
- Solicita corrección directamente y no formula preguntas propias ("hola, necesito que me corrijas el siguiente correo en arabe. te indicare lo que tienes que corregir y me lo envias corregido" [sic]).
- No explora alternativas, ni solicita aclaraciones.
- Se limita a "copiar y pegar".

Perfil 3: uso mixto de ChatGPT.

- 1. Comparativa general de las versiones:
 - Versión inicial: Presenta un texto comprensible con estructura básica (saludo, presentación, contenido, despedida). Muestra corrección gramatical. Sin embargo, el mensaje presenta mezcla de registros, desorganización temática y un estilo excesivamente directo. Formula preguntas sueltas agrupadas en un solo párrafo, con formulaciones ambiguas o poco apropiadas para un correo formal.
 - Versión final, tras la interacción con el asistente: Presenta un correo mucho más cohesionado, formal, rico léxicamente y organizado en un solo párrafo. Se aprecia una mejora sustancial del registro, uso de fórmulas de cortesía y ampliación informativa. El correo se adecúa al propósito comunicativo y al género textual.
- 2. Muestras de mejoras lingüísticas:

Comparando ambas versiones observamos mejoras en las siguientes categorías:

Tabla 3. Categorización, descripción y muestras de mejoras lingüísticas observadas.

Categoría	Descripción	Muestra
1. Adecuación al género	Sustituye expresiones informales por fórmulas formales.	سيدي/سيدتي العزيزة \rightarrow تحية طيبة وبعد أنا (اسم علم) \rightarrow أود أن أتقدّم إليكم
2. Coherencia y cohesión	Distribuye el contenido en un solo párrafo con ayuda de conectores formales. Sustituye interrogaciones directas por peticiones formales.	كم هي مصاريف الدر اسة؟'' → ''كما أرجو بإفادتي'' عن رسوم التسجيل
3. Corrección gramatical	No requiere corrección de errores.	
4. Alcance y precisión léxica	Usa términos más ricos y adecuados al ámbito académico. Emplea sinónimos.	مصاریف الدر اسة \rightarrow رسوم التسجیل أرید \rightarrow أو ذ $/$ أرغب
5. Ampliación informativa	Desarrolla su motivación personal con detalle.	أر غب في أن أدرس معكم لأصبح مترجمًا جيدًا

3. Análisis de la interacción con el asistente.

El diálogo con ChatGPT manifiesta un perfil mixto, parcialmente estratégico:

- Inicialmente, en lugar de elaborar prompts, formula preguntas lingüísticas específicas ("como comienzas un saludo en un correo electrónico [sic]); aunque finaliza contextualizando sus consultas ("Imagina que estas escribiendo una carta a una escuela privada en árabe" [sic]).
- No solicita una redacción completa ni una corrección directa, sino que pide ayuda sobre partes concretas.
- Utiliza ChatGPT como recurso de consulta, adoptando la fórmula sugerida e integrándola en su texto final.
- Cuando ChatGPT le ofrece varias sugerencias, opta por la solución intermedia.

Resultados arrojados por el cuestionario final.

El cuestionario final recoge la valoración del alumnado sobre la actividad implementada. Los resultados muestran una experiencia globalmente positiva y ponen de manifiesto cierta diversidad en cuanto

al apoyo prestado por ChatGPT y la reflexión metacognitiva realizada. Los participantes consideran que las instrucciones docentes han sido claras y comprensibles (4.83), han valorado la retroalimentación docente mediante la rúbrica como muy útil (4.5) y consideran que la interacción con el asistente de ChatGPT "LAIA2325 Expresión escrita" ha sido muy fácil (4.67). La mayoría del alumnado ha destacado la utilidad del asistente para sugerir ideas (4.17) y mejorar aspectos lingüísticos: ortografía y puntuación (4.17), vocabulario apropiado (4.5), explicaciones gramaticales claras (4.0), fórmulas propias de un correo electrónico (4.5), conectores para la cohesión textual (4.33), distinción entre registro formal e informal (4.33) y organización del contenido (4.17). Las respuestas sobre sensación de aprendizaje y reflexión metacognitiva ofrecen medias moderadas: el alumnado ha valorado la inmediatez de la retroalimentación de la IAG como un apoyo útil (3.5), permitiéndole aprender activamente de los errores en lugar de solo corregirlos (4.17). La percepción de autonomía en el aprendizaje es moderada (3.17), así como de mejora de la confianza al escribir en árabe (3.67) y de la motivación (3.83). El interés por emplear IAG en futuras tareas ha sido valorado muy positivamente (4.33).

4. DISCUSIÓN Y CONCLUSIONES

Este trabajo pretende explorar en qué medida ChatGPT es una herramienta útil en la mejora de la expresión escrita en árabe, y si favorece el desarrollo de un aprendizaje significativo. Los resultados obtenidos de los cuestionarios y del análisis de las producciones escritas permiten responder afirmativamente a nuestra pregunta: la integración de ChatGPT mejora la expresión escrita en árabe y favorece el desarrollo del aprendizaje significativo, siempre que el docente contemple estrategias pedagógicas adecuadas, acompañe al estudiante durante el proceso y forme explícitamente al alumnado en estrategias de interacción con la IAG y reflexión sobre el proceso de aprendizaje.

Los datos del cuestionario inicial revelan que el alumnado está poco familiarizado con la IAG como herramienta de aprendizaje. Si bien manifiesta interés hacia su potencial educativo, muestra baja expectativa en la IAG como motor de motivación y cierta preocupación ante riesgos como el plagio, la reducción del esfuerzo, la falta de originalidad, la dependencia excesiva o el aprendizaje superficial. Probablemente, estos resultados están relacionados con la aún escasa integración de la IAG en las asignaturas.

El análisis comparativo de los textos redactados por los estudiantes en sus dos versiones revela, en consonancia con estudios como el de Yatri (2023), que el uso de ChatGPT proporciona mejoras significativas en la calidad de la escritura: adecuación al género discursivo, coherencia y cohesión, corrección gramatical, alcance y precisión léxica. Así como la generación de ideas para la ampliación de contenidos. En similar tendencia a la observada en otros contextos y disciplinas (Güner y Er, 2025; Hwang et ali, 2025; Stojanov et ali, 2024), las interacciones realizadas entre nuestros estudiantes y el asistente de ChatGPT para revisar su texto y obtener una versión mejorada muestran usos diversos. Si bien los estudios ofrecen distintos modos de interacción y las fronteras entre ellos no son nítidas, en nuestro caso diferenciamos tres perfiles principales de uso de ChatGPT: estratégico, pasivo y mixto.

El perfil estratégico refleja un uso transformador de la IAG. La estudiante realiza un uso reflexivo y regulado del asistente: formula *prompts* claros y contextualizados y evalúa críticamente las respuestas; al explicar sus necesidades, transmite conciencia metacognitiva; al solicitar apoyo progresivo, toma decisiones informadas y autónomas, ejerciendo control sobre el proceso de escritura, lo cual es indicativo de aprendizaje autorregulado y efectivo, decidiendo "qué, cómo y cuándo quiere aprender" (Cassany, 2023, p. 333). El proceso revela una actitud metacognitiva y un grado alto de interiorización del género discursivo. La IAG actúa como mediadora del aprendizaje.

El perfil pasivo refleja un uso meramente correctivo. La estudiante realiza un uso mecánico del asistente: al utilizar literalmente la retroalimentación del docente como *prompt*, elude formular preguntas propias, no explora alternativas ni solicita aclaraciones, limitándose a "copiar y pegar". Como advierten Sulaeman et al. (2024) y Yatri (2023), este uso dependiente de la IAG no refleja autorregulación, no es estratégico, ni autónomo: ChatGPT opera como mero corrector. Si bien, el producto final cumple con los objetivos lingüísticos, la estudiante delega la totalidad del trabajo en el asistente, reduciendo su esfuerzo y evaluación crítica, lo que va en contra del aprendizaje significativo (Stojanov et al., 2025).

El perfil mixto refleja una interacción combinada con el asistente. La estudiante realiza un uso limitado de la IAG, consulta e incorpora mejoras sin asumir riesgo en la gestión: en lugar de elaborar *prompts*, formula preguntas lingüísticas específicas; no solicita una redacción completa ni una corrección directa, pide información y ayuda sobre aspectos puntuales, y cuando ChatGPT le ofrece varias sugerencias, opta por la solución menos comprometida. Utiliza la IAG como mera obra de consulta: un diccionario o una gramática convencionales. Este perfil no se caracteriza por un uso crítico, pero la búsqueda de conocimiento no es delegación total de la tarea en la IAG (Stojanov et al., 2025). El perfil mixto presenta señales de reflexión, pero sin una gestión plena del proceso.

Estos hallazgos sugieren que el impacto de la IAG sobre el aprendizaje no depende únicamente del producto generado, sino, sobre todo, del tipo de interacción con la herramienta. Comprender los patrones de interacción entre estudiantes e IAG y tener en cuenta los estilos y necesidades de aprendizaje individuales es necesario para integrar eficazmente la IA en la educación. Como señala Güner (2025), es fundamental orientar a los estudiantes hacia modos de interacción que promuevan el aprendizaje significativo y autorregulado, previniendo la excesiva dependencia finalista de la herramienta.

Los resultados del cuestionario final permiten valorar cómo ha percibido el alumnado la actividad de escritura asistida por ChatGPT. Las positivas valoraciones sobre la claridad de las instrucciones, la utilidad de la retroalimentación docente y la facilidad de interacción con el asistente sugieren una planificación didáctica eficaz y una mediación docente que ha favorecido la comprensión de la tarea y su ejecución. La ayuda prestada por el asistente ha sido valorada como útil en lo lingüístico, no obstante, las consideraciones sobre el aprendizaje reflejan distintos grados de implicación metacognitiva. El alumnado reconoce haber aprendido de sus errores y haber mejorado su motivación con respecto a las expectativas iniciales, no así su autonomía y confianza, probablemente debido a su experiencia formativa previa, a su limitada conciencia sobre el proceso de expresión escrita y al escaso recorrido con la IAG.

En conclusión, este estudio pone de manifiesto que los beneficios de la IAG, tanto los lingüísticos como los metacognitivos, dependen del tipo de uso que hace el estudiante y de la orientación del docente, que debe tener en cuenta las formas de interacción estudiante-IA y su estilo de aprendizaje. Es indispensable enseñarle a interactuar con la IAG con actitud reflexiva y crítica, a formular *prompts* eficaces y a revisar las decisiones. La mera incorporación de la IAG no garantiza un aprendizaje autorregulado y significativo.

Nuestro estudio contiene limitaciones: el reducido tamaño de la muestra y la corta duración de la intervención. Sin embargo, aunque no permite generalizar los resultados, proporciona información detallada y contextualizada.

Nuestros hallazgos nos permitirán diseñar nuevas actividades, contemplando estrategias pedagógicas y acompañamiento docente adecuado, y formando al alumnado en estrategias de interacción con la IAG orientadas a lograr un aprendizaje efectivo.

5. REFERENCIAS

- Alharbi, W., (2023). AI in the Foreign Language Classroom: A Pedagogical Overview of Automated Writing Assistance Tools. *Education Research International*, (1)1-15. https://doi.org/gr9psp
- Blanco, J. M., (2024). Inteligencia artificial y enseñanza de E/LE: posibilidades del programa Chat-GPT para la práctica de la expresión e interpretación escritas. In Urbina, R., Simarro, M., Portela, A. & Ibáñez, C. (Eds.). *Interacción, discurso y tecnología en la enseñanza del español*. (pp. 349-357). Universidad de Burgos.
- Cassany, D. (2009). La composición escrita en E/LE. In L. Miquel y N. Sans (Eds.), *Didáctica del español como lengua extranjera. MarcoELE* (pp. 47-66). https://tinyurl.com/26wnv9gq
- Cassany, D. (2023). (Enseñar a) leer y escribir con inteligencias artificiales generativas: reflexiones, oportunidades y retos. *Enunciación*. 29(2), 320-336. https://doi.org/psm3
- Cerezo, L. & Yanguas, I. (2024). Motivación y enseñanza virtual. In Muñoz-Basols, J., Fuertes, M. y Cerezo, L., *La enseñanza del español mediado por tecnología*. (pp. 131-159) Routledge. https://doi.org/pstr
- Chávez, N. (2023). La inteligencia artificial... ¿amenaza u oportunidad para el proceso formativo en educación superior? In REDINE (Ed.) Conference Proceedings EDUNOVATIC 2023, Adaya. (pp. 14-19). https://doi.org/10.58909/adc24139168
- Güner, H. & Er, E. (2025). AI in the classroom: Exploring students' interaction with ChatGPT in programming learning. *E Education and Information Technologies*, 30, 12681–12707. https://doi.org/pskx
- Hwang, M., Lee, E. & Lee, H-K., (2025). Profiling and Understanding EFL University Students' Purposes for Using ChatGPT: A Latent Profile Analysis. *The Journal of Asia TEFL*, 22(1-202). https://doi.org/pskz
- Karataş, F., Abedi, F. Y., Ozek Gunyel, F., Karadeniz, D. & Kuzgun, Y., (2024). Incorporating AI in foreign language education: An investigation into ChatGPT's effect on foreign language learners. *Educ Inf Technol*, 29, 19343–19366. https://doi.org/gt3xjx
- Martí, V. (2012). Metodología pedagógica e investigación en el campo de la enseñanza y aprendizaje del árabe como segunda lengua: elementos para un estado de la cuestión. *Miscelánea de Estudios Árabes y Hebraicos. Sección Árabe-Islam*, 61, 37–60. https://tinyurl.com/2yxe95uk
- Mohideen H.L.M. (2024). Exploring the Opportunities of Implementing Artificial Intelligence Technology for Teaching Arabic to Non-Native Speakers: A Theoretical Approach. *Journal of Digital Learning and Distance Education*, 2(9), 760-767. https://doi.org/10.56778/jdlde.v2i69.225
- Nazari, N., Shabbir, M.S. & Setiawan, R., (2021). Application of Artificial Intelligence powered digital writing assistant in higher education: randomized controlled trial. *Heliyon*, 7(5), 2405-8440. https://doi.org/gq6zbm
- Nur, N., Goh, S.J., Patel, J., & Mizrahi, M., (2024). Navigating The Ethical Landscape of AI Integration In Educational Settings, *Proceeding of INTED2024 Conference*, Valencia, March 4-6. https://doi.org/psk2
- Ribes, M., & Navarro, B., (2023). Aprovechamiento de ChatGPT en la enseñanza de lengua extranjera en educación superior. In Ortega-Sánchez, D. & López-Padrón, A. (Eds.), *Educación y sociedad: claves interdisciplinares*. (pp. 1264-1271). Octaedro. http://doi.org/10.36006/16426-1
- Sabzalieva, E. & Valentini, A. (2023). *ChatGPT e inteligencia artificial en la educación superior: guía de inicio rápido*. UNESCO. https://tinyurl.com/2en7vpht

- Saleh, W. (2003). Dificultades específicas en el aprendizaje de la lengua árabe por los hisponoparlantes. *Aljamía* (15), 37-41. https://tinyurl.com/24lxbwud
- Samin, S. & Osman, R., (2024). Integrating Artificial Intelligence into the Arabic Language Teaching Plan at Higher Education. *SHS Web of Conferences*, 202, 06010 https://doi.org/psm2
- Serrano, J. L. y Moreno-García, J. (2024). Inteligencia artificial y personalización del aprendizaje: ¿innovación educativa o promesas recicladas? EDUTEC, 89. https://doi.org/psrd
- Solak, E. (2024). Revolutionizing language learning: How ChatGPT and AI are changing the way we learn languages. *International Journal of Technology in Education* (IJTE), 7(2), 353-372. https://doi.org/10.46328/ijte.732
- Stojanov, A., Liu, Q. & Koh, J. H.L. (2024). University students' self-reported reliance on ChatGPT for learning: A latent profile analysis. *Computers and Education: Artificial Intelligence*, 6, 100243. https://doi.org/g855xj
- Sulaeman, I., Syuhadak, S. & Sulaeman, I. (2024). ChatGPT as a New Frontier in Arabic Education Technology. Al-Arabi. Journal of Teaching Arabic as a Foreign Language. 7(1). https://doi.org/psrh
- Yatri, D., Anugerahwati, M., & Setyowati, I., (2023). Artificial Intelligence (AI) in Language Learning (English and Arabic Class): Students' and Teachers' Experience and Perceptions. Transformational Language, Literature, and Technology overview in Learning, 3(1), 1-12. https://doi.org/psm5
- الفقي، م. & قدوم، م. (٢٠٢). أوجه الإفادة من تطبيقات الذكاء الاصطناعي في تعليم اللغة العربية لغير الناطقين بها. In قدوم، م. (٢٠٢). أوجه الإفادة من تطبيقات الذكاء الاصطناعي ودوره في تعلم اللغة العربية وتعليمها: أبحاث علمية محكمة. Masp/gro.iod//:sptth قدوم، م. (٢٠٤).

14. Enseñanza de la Ingeniería Costera mediante metodologías activas: Un enfoque centrado en proyectos y debate¹

Toledo Sepulcre, Ignacio; Aragonés Pomares, Luis

Departamento de Ingeniería Civil, Universidad de Alicante

RESUMEN

La docencia universitaria en disciplinas técnicas, como la Ingeniería Costera, ha estado tradicionalmente centrada en clases magistrales, lo que ha generado desmotivación y bajo rendimiento en el alumnado. En este trabajo se presenta una propuesta metodológica basada en el Aprendizaje Activo y el Aprendizaje Basado en Proyectos, aplicada en asignaturas de grado y máster. La estrategia combina investigación individual, debate en el aula y trabajo grupal. Cada estudiante analizó la situación de un país del mundo en relación con sus riesgos costeros, normativas de protección y estrategias frente al cambio climático. Posteriormente, defendió sus hallazgos en un debate estructurado y colaboró en la elaboración de un informe crítico comparativo. Los resultados evidencian una mejora en la participación, motivación y capacidad crítica del estudiantado, así como un incremento del rendimiento académico. Además, se observó un alto grado de satisfacción con la metodología, destacando el valor del debate y la cooperación. Se concluye que este enfoque es replicable en otras asignaturas teóricas y favorece el aprendizaje significativo, fomentando competencias transversales clave para el desarrollo profesional. La experiencia demuestra que integrar metodologías activas puede transformar positivamente el proceso de enseñanza-aprendizaje en contextos universitarios.

PALABRAS CLAVE: aprendizaje activo, aprendizaje basado en proyectos, ingeniería costera, cambio climático, legislación.

1. INTRODUCCIÓN

La enseñanza universitaria ha estado tradicionalmente dominada por clases magistrales en las que el docente expone los contenidos teóricos, mientras que el alumnado asume un rol pasivo, limitando su aprendizaje a la memorización y posterior aplicación de los conocimientos en exámenes finales (Zambrano et al., 2022). Sin embargo, diversos estudios han señalado que este enfoque presenta deficiencias, especialmente en la retención del conocimiento, la motivación estudiantil y el desarrollo de habilidades críticas y colaborativas (López Noguero, 2007; Mora León et al., 2019; Sevilla-Sánchez et al., 2023). En el ámbito de la Ingeniería Costera, estas dificultades pueden ser aún más pronunciadas, ya que los conceptos teóricos requieren una comprensión profunda y aplicada para abordar problemas complejos del mundo real (López et al., 2017; Pagán Conesa & López Úbeda, 2022). Para superar estas limitaciones, en los últimos años se ha ido implementado una metodología de enseñanza

¹ El presente trabajo ha contado con una ayuda del Programa de Redes de investigación en docencia universitaria del Instituto de Ciencias de la Educación de la Universidad de Alicante (convocatoria 2024). Ref.: 6119

basada en el Aprendizaje Activo y el Aprendizaje Basado en Proyectos en asignaturas de cualquier disciplina universitaria (Aguirre Pastor et al., 2022; Toledo Morales & Sánchez García, 2018). Esta estrategia fomenta la investigación individual y el debate colectivo como herramientas clave para la construcción del conocimiento.

Diversos estudios previos han abordado la importancia de las metodologías activas en la educación universitaria, concretamente en la ingeniería aplicada. Rico Jiménez et al. (2018) y Covarrubias Couder et al. (2023) destacan que el Aprendizaje Basado en Proyectos favorece el desarrollo de habilidades de análisis crítico y resolución de problemas, mientras que Aliane & Benposta (2008) enfatizan la relevancia de la cooperación y el debate en la consolidación del conocimiento. Por su parte, Duran-Lopez et al. (2021) y Barrera Arcaya et al. (2022) señalan que el uso de dinámicas competitivas en el aula puede incrementar la motivación estudiantil y mejorar su rendimiento académico. Basándonos en estos antecedentes, este estudio busca evaluar la eficacia de una metodología cooperativa aplicada a la enseñanza de la Ingeniería Costera, centrada en la investigación individual y el debate colectivo.

El objetivo principal de esta investigación es analizar el impacto de la implementación de una estrategia de Aprendizaje Activo y Aprendizaje Basado en Proyectos en el desempeño académico y la motivación del estudiantado en dos asignaturas de Ingeniería Costera, tanto en estudios de grado como de máster. En particular, se pretende evaluar si la metodología propuesta mejora la capacidad crítica y reflexiva del estudiante, fomenta su participación en clase y contribuye a una mejora del rendimiento académico. Como hipótesis de trabajo, se plantea que la incorporación de estos enfoques metodológicos permitirá incrementar la motivación estudiantil y su compromiso con la asignatura, favoreciendo un aprendizaje más profundo y aplicado. Este estudio busca, además, ofrecer un modelo replicable en otras disciplinas, especialmente en aquellas materias con una fuerte carga teórica, donde el alumnado puede perder interés con mayor facilidad.

2. MÉTODO

Se ha desarrollado una metodología cooperativa que fomenta la investigación individual, junto con la participación y el debate colectivo. Esta estrategia no solo permite el desarrollo de habilidades de investigación y análisis crítico, sino que también promueve el trabajo colaborativo y la síntesis de conocimientos.

2.1. Descripción del contexto y de los participantes

El estudio se llevó a cabo en dos asignaturas de Ingeniería Costera, una correspondiente al Grado en Ingeniería Civil (Ingeniería Portuaria y Costera) y otra al Máster en Ingeniería de Caminos, Canales y Puertos (Ingeniería Marítima) de la Universidad de Alicante. Los participantes fueron un total de 30 estudiantes, 18 del grado y 12 del máster. La mayoría de los estudiantes de máster contaban con conocimientos previos en dinámica costera y gestión ambiental, aunque con poca experiencia en normativas y estrategias de protección costera a nivel internacional. Los estudiantes de grado no contaban con ninguna experiencia en esta disciplina. Las asignaturas se impartieron en su totalidad en un entorno presencial con acceso a recursos digitales durante las clases prácticas para la gestión de la información y la evaluación del trabajo colaborativo.

2.2. Instrumentos

Para la recopilación de datos se utilizaron diferentes instrumentos, incluyendo encuestas de percepción estudiantil, participación en el debate y análisis del rendimiento académico durante las entregas (evaluación continua). Las encuestas fueron diseñadas con preguntas tipo Likert para medir la motivación, la percepción del aprendizaje y la utilidad de la metodología. La participación en los debates contabilizó el número de intervenciones significativas durante el debate. Además, se evaluó cuantitativamente la calidad de los informes, tanto individuales como grupales, identificando la evolución del rendimiento académico durante el propio curso y respecto a cursos anteriores. La cumplimentación de las encuestas se realizó al final del proceso, una vez se realizó la entrega del informe grupal.

2.3. Procedimiento

El proceso de implementación de la metodología se desarrolló en tres fases principales (Figura 1). En la primera fase, a cada estudiante se le asignó un país del mundo del cual tenía que revisar los riesgos costeros a los que está sometido, su legislación en materia de protección costera y estrategias contra el cambio climático en las playas de arena, así como su inversión en obras de protección. Para realizar este apartado se proporcionaron enlaces para acceder a los recursos disponibles: webs ministeriales, artículos científicos y recortes de prensa. Esta fase tuvo una duración de un mes y se realizó de manera individual. Es importante destacar que las asignaturas de grado y máster se cursaron en diferentes cuatrimestres, por lo que, dado que la información disponible era muy limitada para la gran mayoría de países, se optó por asignar los mismos países a los estudiantes de máster. En este caso, al ser menor en número, se les proporcionó el informe entregado por sus compañeros de grado, a partir del cual tenían que complementar con nueva información requerida.

Una vez finalizado el proceso de investigación individual, se procedió a una sesión de debate en el aula conducido por el docente de la asignatura, en la que formuló una serie de preguntas en las que los estudiantes tenían que defender las ventajas y desventajas de la normativa del país que se les había asignado, argumentando con base en su investigación. Se fomentó la participación activa mediante preguntas dirigidas y dinámicas de comparación entre países.

Finalmente, en la tercera fase, los estudiantes trabajaron en grupos para completar una tabla compartida en un archivo Excel, en la que puntuaron en una escala del 1 al 5 la eficacia de cada normativa en diferentes aspectos en base a una serie de criterios planteados. Con base en esta información, elaboraron un informe grupal en el que analizaron las regulaciones y estrategias comparadas, identificando fortalezas, debilidades y posibles mejoras o soluciones innovadoras. La evaluación final del aprendizaje se realizó mediante la revisión de los informes y la aplicación de encuestas de satisfacción y percepción del aprendizaje.

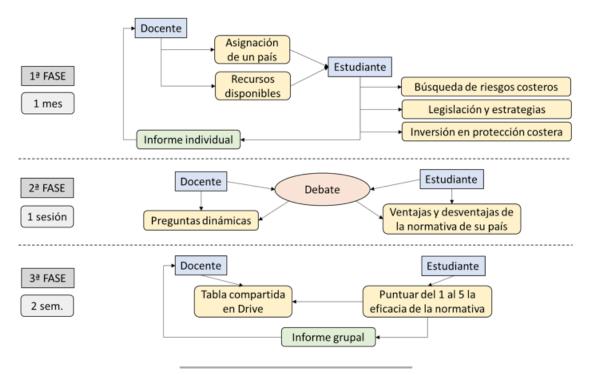


Figura 1. Flujo de trabajo del experimento.

3. RESULTADOS

En primer lugar, se valoró el nivel de satisfacción con la metodología general, y con cada una de sus fases (Tabla 1). Para ello, se utilizó una encuesta con 17 preguntas y respuestas tipo Likert, en la que los estudiantes tenían que valorar del 1 (muy en desacuerdo) al 5 (muy de acuerdo). En general, los estudiantes han valorado positivamente la utilidad global de la metodología en el proceso de aprendizaje. Un 76.67% de ellos calificó con una puntuación de 5 que esta metodología le había supuesto una motivación extra respecto a una clase teórica más convencional. Además, la totalidad de los estudiantes (100% con puntuación 4 y 5) asegura que han aprendido más con este método que con otro aplicado en asignaturas similares. El factor claramente menos valorado fue el equilibrio combinado de trabajo individual, debate y trabajo grupal, ya que un 6.67% de los estudiantes contestó con una puntuación de 2 (en desacuerdo) y un 30% de los alumnos contestó con una puntuación de 3 (neutral). En el apartado de observaciones estos estudiantes afirmaron que la fase 1 una carga de trabajo mucho más alta que en las dos fases siguientes.

Tabla 1. Resultados de la encuesta de percepción al alumnado sobre la metodología general. (1 – Muy en desacuerdo, 2 – En desacuerdo, 3 – Neutral, 4 – De acuerdo, 5 – Muy de acuerdo)

Pregunta	(1)	(2)	(3)	(4)	(5)
Esta metodología ha sido más motivadora que una clase convencional	0.00%	0.00%	0.00%	23.33%	76.67%
He aprendido más con este método que con otros empleados en otras asignaturas	0.00%	0.00%	0.00%	40.00%	60.00%
Recomendaría este enfoque para futuras ediciones de la asignatura	0.00%	0.00%	0.00%	30.00%	70.00%
La combinación de trabajo individual, debate y trabajo grupal ha sido equilibrada	0.00%	6.67%	30.00%	50.00%	13.33%

La fase 1 fue la menos valorada de las tres, ya que muchos estudiantes consideraron que esta etapa (investigación individual) formaba parte más de una metodología más tradicional, que de un enfoque novedoso (Tabla 2). Por ejemplo, solo un 53.33% de los estudiantes se sintió motivado/a para trabajar de forma autónoma sobre su caso real, mientras que un 36.67% expresó que su capacidad para buscar y seleccionar información relevante no había mejorado significativamente (puntuación de 3 – Neutral). En cambio, los estudiantes valoraron muy positivamente la asignación individual de un país específico para enfocar mejor su investigación (un 90% contestó "De acuerdo" y "Muy de acuerdo"), mientras que un 100% consideró útiles o muy útiles los recursos proporcionados por el docente (webs ministeriales, artículos científicos y recortes de prensa).

Tabla 2. Resultados de la encuesta de percepción al alumnado sobre la 1ª fase. (1 – Muy en desacuerdo, 2 – En desacuerdo, 3 – Neutral, 4 – De acuerdo, 5 – Muy de acuerdo)

Pregunta	(1)	(2)	(3)	(4)	(5)
La asignación de un país específico me ayudó a enfocar mejor mi investigación	0.00%	0.00%	10.00%	60.00%	30.00%
Los recursos proporcionados fueron útiles para desarrollar el trabajo	0.00%	0.00%	0.00%	26.67%	73.33%
Me sentí motivado/a al trabajar de forma autónoma sobre un caso real	0.00%	6.67%	40.00%	33.33%	20.00%
Esta fase ha mejorado mi capacidad para buscar y seleccionar información relevante	0.00%	0.00%	36.67%	46.67%	16.67%

La segunda fase (debate) fue la mejor valorada de todas las etapas, por lo novedoso del formato (Tabla 3). El 86.67% del alumnado valoró con una puntuación de 5 que el formato de debate fomentó su participación activa en clase, mientras que un 63.33% afirmó que esta fase mejoró sus habilidades en comunicación oral y argumentación. Por otro lado, 16.67% de los estudiantes expresó que comparar los argumentos de los compañeros no enriqueció significativamente su aprendizaje, al igual que un 10% consideró que defender la normativa del país asignado no le hizo razonar mejor sus ventajas y desventajas. Hay que destacar que la gran disparidad de diferentes enfoques de normativas de gestión y protección costera, y una menor cantidad de información para algunos países de estudio pudo hacer que algunos alumnos se sintieran menos preparados para afrontar el debate.

Tabla 3. Resultados de la encuesta de percepción al alumnado sobre la 2ª fase. (1 – Muy en desacuerdo, 2 – En desacuerdo, 3 – Neutral, 4 – De acuerdo, 5 – Muy de acuerdo)

Pregunta	(1)	(2)	(3)	(4)	(5)
El formato de debate fomentó mi participación activa en clase	0.00%	0.00%	0.00%	13.33%	86.67%
Defender la normativa de mi país me hizo razonar mejor sus ventajas y desventajas		0.00%	10.00%	40.00%	50.00%
Escuchar y comparar los argumentos de los compañeros enriqueció mi aprendizaje	0.00%	0.00%	16.67%	53.33%	30.00%
El docente facilitó adecuadamente el desarrollo del debate	0.00%	0.00%	0.00%	43.33%	56.67%
Esta fase mejoró mis habilidades de comunicación oral y argumentación	0.00%	0.00%	0.00%	36.67%	63.33%

Por último, en la Tabla 4 se muestran los resultados de la encuesta sobre la Fase 3. Al igual que en la etapa anterior, esta se valoró de forma positiva, aunque en menor medida. El uso de archivos compartidos en la nube (Excel) para realizar la comparación entre normativas fue muy valorado por todos alumnos, ya que un 100% contestó "De acuerdo" y "Muy de acuerdo". En cambio, un 40% afirmó que la elaboración del informe grupal no fue una experiencia de aprendizaje especialmente significativa (2 – En desacuerdo y 3 – Neutral), mientras que un 26.67% cree que la dinámica en grupo no favoreció significativamente el intercambio de ideas. Algunos estudiantes comentaron que algunos de sus compañeros no se esforzaron lo suficiente para entregar un trabajo de calidad.

Tabla 4. Resultados de la encuesta de percepción al alumnado sobre la 3ª fase. (1 – Muy en desacuerdo, 2 – En desacuerdo, 3 – Neutral, 4 – De acuerdo, 5 – Muy de acuerdo)

Pregunta	(1)	(2)	(3)	(4)	(5)
El uso del Excel compartido facilitó la comparación objetiva entre países	0.00%	0.00%	0.00%	53.33%	46.67%
La elaboración del informe grupal fue una experiencia de aprendizaje significativa	0.00%	3.33%	36.67%	36.67%	23.33%
La dinámica en grupo favoreció el intercambio de ideas	0.00%	0.00%	26.67%	53.33%	20.00%
Esta fase me permitió integrar y aplicar los conocimientos adquiridos en fases previas	0.00%	0.00%	6.67%	60.00%	33.33%

A continuación, se midió la participación en debates. Se observó que los estudiantes de máster participaron más que sus compañeros de grado (Figura 2a). El 75% de los estudiantes de máster participó activamente en al menos tres intervenciones significativas durante la sesión de debate, mientras que ese porcentaje se redujo tan solo al 33.33% entre los estudiantes de grado. Se ha remarcar que muchos estudiantes de máster ya tenían cierta experiencia previa en la materia, ya que esta fue cursada durante la asignatura de grado. Además, los estudiantes con mayor participación lograron calificaciones del orden de un 15% superiores en la evaluación continua en comparación con aquellos que intervinieron menos tomando en consideración la suma de los alumnos de grado y máster (Figura 2b).

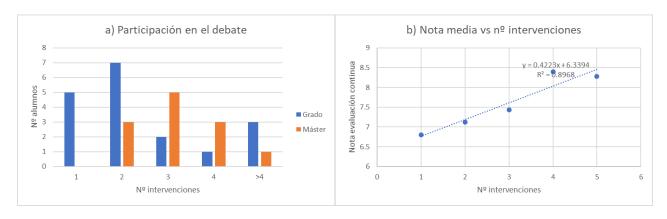
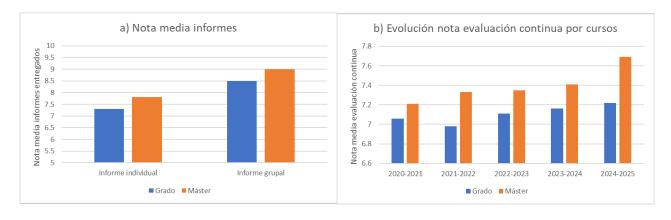



Figura 2. a) Participación en el debate, b) Nota media vs nº intervenciones en el debate.

Finalmente, se analizó el impacto de esta actividad en la evaluación final. El informe grupal recibió una mejor nota que la media de los informes individuales entregados, tanto para grado, como para máster (Figura 3a). Los informes individuales fueron evaluados con una nota media 7.3 en el Grado y 7.8 en la asignatura del Máster, mientras que el informe grupal obtuvo una nota de 8.5 en el Grado y 9 en el Máster. Por otro lado, el análisis de las calificaciones de la evaluación continua mostró un incremento de las notas, tanto en los estudiantes de grado como en los de máster (Figura 3b). Se observó un fuerte incremento, de 0.28 puntos, en la nota media de los estudiantes de Ingeniería Marítima (Máster) en el curso 2024/25 respecto al curso 2023/24, en el que se había seguido una metodología más tradicional. Por otro lado, en la asignatura de Ingeniería Portuaria y Costera del Grado también se observó un incremento en la nota media, aunque este fue más leve que en el caso del máster, de solo 0.06 puntos.

Figura 3. a) Nota media de los informes entregados por los alumnos y b) Evolución de la nota de la evaluación continua en los últimos 5 cursos académicos.

Estos resultados reflejan un impacto positivo de la metodología en el aprendizaje y la motivación del estudiantado, lo que sugiere su posible aplicación en otras asignaturas de la ingeniería con una fuerte carga teórica.

4. DISCUSIÓN Y CONCLUSIONES

En el presente trabajo se ha abordado la implantación de la metodología combinada de aprendizaje basado en proyectos y debate para el desarrollo de parte de los contenidos prácticos de las asignaturas de Ingeniería Portuaria y Costera, de cuarto curso del Grado en Ingeniería Civil, y de Ingeniería Marítima, de primer curso de Máster en Ingeniería de Caminos, Canales y Puertos, ambos de la Universidad de Alicante.

Los hallazgos obtenidos en esta investigación están en línea con lo señalado por Rico Jiménez et al. (2018) y Covarrubias Couder et al. (2023), quienes argumentan que el Aprendizaje Basado en Proyectos estimula la autonomía del estudiante y fortalece su pensamiento crítico. Así ha quedado reflejado en esta investigación, donde un 100% de los estudiantes encuestados ha afirmado que esta metodología le ha resultado más motivadora que una más convencional (Tabla 1). Además, estos mismos estudiantes también han apuntado que han aprendido más con una metodología activa, como la que aquí se presenta. Esto es coherente con el incremento de notas observado a lo largo del último curso, o con un mejor desempeño estudiantil en los informes grupales (metodología activa)

respecto a los informes individuales, donde los estudiantes realizaron un trabajo más autónomo (Figura 3). La inclusión del trabajo colaborativo y las dinámicas competitivas en la evaluación de la materia ha demostrado mejorar el rendimiento académico de los estudiantes (Barrera Arcaya et al. (2022); Duran-Lopez et al. (2021)), incluso en materias complejas, como las abordadas en Ingeniería Costera.

Además, el incremento en la participación activa durante los debates y la mejora en las calificaciones finales refuerzan lo planteado por Duran-Lopez et al. (2021) y Pagán Conesa & López Úbeda, 2022, quienes sugieren que la gamificación y la competitividad sana promueven un mayor compromiso del estudiante con el contenido académico. Se evidencia que esta metodología implicó un mayor interés por parte de los estudiantes, ya que mostraron un sentimiento de competitividad al tener que defender a su país asignado frente a todos sus compañeros. Esto se puede observar en la Figura 2a, donde el 72% de los estudiantes de grado y el 100% de los de máster intervinieron en al menos dos ocasiones en el debate, o en la Figura 2b, donde los estudiantes que intervinieron un mayor número de veces obtuvieron mejores notas.

En este estudio, la metodología no solo generó un entorno más participativo y dinámico, sino que también ofreció un espacio para el desarrollo de competencias transversales clave, como la capacidad de análisis, la expresión oral y escrita, y el trabajo en equipo. La introducción de debates estructurados permitió contrastar diferentes realidades normativas a nivel internacional, lo que enriqueció la experiencia de aprendizaje y permitió al alumnado adoptar una visión más global y crítica de los desafíos costeros contemporáneos.

Asimismo, se destaca que esta metodología es adaptable a otras áreas del conocimiento, especialmente en aquellas disciplinas o asignaturas más teóricas, en las que el estudiante puede perder el interés por estudiarla, y que su aplicación no requiere de grandes recursos adicionales, más allá de una adecuada planificación por parte del docente. Se recomienda su implementación progresiva en otras asignaturas con el fin de fomentar un modelo educativo más centrado en el estudiante, en el que la investigación, el análisis crítico y el debate sean herramientas fundamentales del proceso de enseñanza-aprendizaje.

5. REFERENCIAS

- Aguirre Pastor, M. Á., Canals, A., Hidalgo, M., Vidal, L., & Cerdán, M. (2022). Mejorando la adquisición de competencias de habilidad en el laboratorio de química mediante la metodología de laboratorio invertido. In: *Redes de Investigación e Innovación en Docencia Universitaria. Volumen 2022* (pp. 23-32). Instituto de Ciencias de la Educación.
- Aliane, N., & Bemposta, S. (2008). Una Experiencia de Aprendizaje Basado en Proyectos en una Asignatura de Robótica. *Rev. Iberoam. de Tecnol. del Aprendiz.*, 3(2), 71-76.
- Barrera Arcaya, F., Venegas-Muggli, J. I., & Ibacache Plaza, L. (2022). El efecto del Aprendizaje Basado en Proyectos en el rendimiento académico de los estudiantes. *Revista de estudios y experiencias en educación*, 21(46), 277-291. https://dx.doi.org/10.21703/0718-5162.v21.n46.2022.015
- Covarrubias Couder, M. A., Jiménez López, E., Amavizca Valdez, L. O., Tolano Gutiérrez, H. K., Vázquez Moreno, E. E., & Gaytán Martínez, L. Z. (2023). El aprendizaje basado en proyectos: una experiencia de la EBC en la carrera de ingeniería industrial en calidad de la universidad la Salle Noroeste. *Ciencia Latina Revista Científica Multidisciplinar*, 7(2), 1949-1969. https://doi.org/10.37811/cl rcm.v7i2.5443

- Duran-Lopez, L., Gutierrez-Galan, D., Cerezuela-Escudero, E., Rios-Navarro, A., & Dominguez-Morales, J. P. (2021). Aprendizaje basado en proyectos en el ámbito de la Ingeniería de la Salud: desarrollo de sistemas para la rehabilitación y la ayuda a la discapacidad. In: *Actas de las XXVII Jornadas sobre la Enseñanza Universitaria de la Informática, València, 7-8 de julio de 2021* (pp. 275-278). València: Asociación de Enseñantes Universitarios de la Informática
- López, I., Bañón, L., Antón Sempere, J., Aragonés, L., Jordá Guijarro, M. A., García Hernández, S., Vico Segarra, A. M., Pagán Conesa, J. I., & Sánchez Mancebo, J. (2017). Desarrollo de material docente para las asignaturas asociadas a la ingeniería portuaria, marítima y costera. In: *Memorias del Programa de Redes-I3CE de calidad, innovación e investigación en docencia universitaria. Convocatoria 2016-17* (pp. 1170-1180). Instituto de Ciencias de la Educación.
- López Noguero, F. (2007). Metodología participativa en la enseñanza universitaria. *Pedagogía Social. Revista Interuniversitaria*, (14), 160-161.
- Mora León, W., Carranza, L. S., & Páliz Sánchez, C. (2019). El aprendizaje basado en proyecto: Realidad y perspectivas. *Journal of Science and Research*, *4*(4), 22-33.
- Pagán Conesa, J. I., & López Úbeda, I. (2022). Fomento del aprendizaje activo en la asignatura de Gestión y Explotación de Puertos. In *Redes de Investigación e Innovación en Docencia Universitaria: Volumen 2022* (pp. 335-343). Instituto de Ciencias de la Educación.
- Rico Jiménez, B. A., Garay Jiménez, L. I., & Ruiz Ledesma, E. F. (2018). Implementación del aprendizaje basado en proyectos como herramienta en asignaturas de ingeniería aplicada. *RIDE. Revista Iberoamericana para la Investigación y el Desarrollo Educativo*, *9*(17), 20-57. https://doi.org/10.23913/ride.v9i17.372
- Sevilla-Sánchez, M., Dopico Calvo, X., Morales, J., Iglesias-Soler, E., Fariñas, J., & Carballeira, E., (2023). La gamificación en educación física: efectos sobre la motivación y el aprendizaje. *Retos: nuevas tendencias en educación física, deporte y recreación*, (47), 87-95.
- Toledo Morales, P., & Sánchez García, J. M. (2018). Aprendizaje basado en proyectos: Una experiencia universitaria. *Profesorado, Revista de currículum y formación del profesorado, 22*(2), 471-491. https://doi.org/10.30827/profesorado.v22i2.7733
- Zambrano Briones, M. A., Hernández Díaz, A., & Mendoza Bravo, K. L. (2022). El aprendizaje basado en proyectos como estrategia didáctica. *Revista Conrado, 18*(84), 172-182.

Metodologías activas y tecnologías emergentes aplicadas a la docencia universitaria

En este volumen se analiza el papel de las metodologías activas y emergentes en la renovación de la docencia universitaria, situando al estudiantado en el centro del proceso de aprendizaje. La obra reúne investigaciones, experiencias y reflexiones innovadoras que han sido sometidas a un riguroso proceso de revisión por pares, con la participación de docentes e investigadores de distintas universidades comprometidos con la mejora continua de la calidad educativa.

A lo largo de sus capítulos, se abordan enfoques pedagógicos como el aprendizaje basado en proyectos y en problemas, el aula invertida, la gamificación, el aprendizaje cooperativo y el uso pedagógico de las tecnologías digitales. Estos modelos no solo representan tendencias en innovación educativa, sino que configuran estrategias consolidadas para fomentar la autonomía, el pensamiento crítico, la creatividad y la colaboración entre el alumnado.

El monográfico pone de relieve la capacidad del profesorado universitario para experimentar, adaptarse y liderar procesos de cambio metodológico, evidenciando cómo la innovación pedagógica puede transformar las dinámicas de aula y promover aprendizajes más significativos.

En definitiva, esta obra constituye una invitación a reflexionar sobre el potencial de las metodologías activas como motor de una universidad más inclusiva, dinámica y comprometida con los desafíos sociales y profesionales del siglo xxI.

Rosana Satorre Cuerda es Doctora en Ingeniería Informática, Titular de Universidad en Ciencia de la Computación e Inteligencia Artificial de la Universidad de Alicante [UA]. Ha ocupado los cargos de Subdirectora (2000-2004) y Directora en funciones (2004-2005) del Departamento, y Subdirectora de las Titulaciones de Informática (2005-2009) y Secretaria (2009-2013) de la Escuela Politécnica Superior de la UA. Actualmente es Directora del Instituto de Ciencias de la Educación de esta universidad.

